水中低频电共振

viXra Pub Date : 2020-08-30 DOI:10.31219/osf.io/myh24
Xindong Wang, Qiang Fu
{"title":"水中低频电共振","authors":"Xindong Wang, Qiang Fu","doi":"10.31219/osf.io/myh24","DOIUrl":null,"url":null,"abstract":"We report the observation of sharp electrical resonance of water with width ~2 neV in the low radiofrequency range at room temperature. Various controlling factors, including temperature, pH level, biasvoltage, and boundary conditions are found to impact on the resonance frequency and intensity. The neVlevel of the resonant width is not expected under room temperature (~25 meV), within any existingmolecular theory of the dielectric properties of water, strongly suggesting that a macroscopic long-rangecoherent quantum mechanical excited state is responsible for the resonance.","PeriodicalId":23650,"journal":{"name":"viXra","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Frequency Electrical Resonance in Water\",\"authors\":\"Xindong Wang, Qiang Fu\",\"doi\":\"10.31219/osf.io/myh24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the observation of sharp electrical resonance of water with width ~2 neV in the low radiofrequency range at room temperature. Various controlling factors, including temperature, pH level, biasvoltage, and boundary conditions are found to impact on the resonance frequency and intensity. The neVlevel of the resonant width is not expected under room temperature (~25 meV), within any existingmolecular theory of the dielectric properties of water, strongly suggesting that a macroscopic long-rangecoherent quantum mechanical excited state is responsible for the resonance.\",\"PeriodicalId\":23650,\"journal\":{\"name\":\"viXra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"viXra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31219/osf.io/myh24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/myh24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了在室温下低频范围内观察到宽度为~2 neV的水的尖锐电共振。各种控制因素,包括温度、pH值、偏压和边界条件,都会影响共振频率和强度。在室温下(~25 meV),在任何现有的水的介电性质分子理论中,共振宽度的nevv水平是不可预期的,这强烈表明宏观的远程相干量子力学激发态是引起共振的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Frequency Electrical Resonance in Water
We report the observation of sharp electrical resonance of water with width ~2 neV in the low radiofrequency range at room temperature. Various controlling factors, including temperature, pH level, biasvoltage, and boundary conditions are found to impact on the resonance frequency and intensity. The neVlevel of the resonant width is not expected under room temperature (~25 meV), within any existingmolecular theory of the dielectric properties of water, strongly suggesting that a macroscopic long-rangecoherent quantum mechanical excited state is responsible for the resonance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信