并行构建RNA数据库,广泛预测lncRNA-RNA相互作用

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Iñaki Amatria-Barral, J. González-Domínguez, J. Touriño
{"title":"并行构建RNA数据库,广泛预测lncRNA-RNA相互作用","authors":"Iñaki Amatria-Barral, J. González-Domínguez, J. Touriño","doi":"10.1145/3555776.3577772","DOIUrl":null,"url":null,"abstract":"Long non-coding RNA sequences (lncRNAs) have completely changed how scientists approach genetics. While some believe that many lncRNAs are results of spurious transcriptions, recent evidence suggests that there exist thousands of them and that they have functions and regulate key biological processes. For the experimental characterization of lncRNAs, many tools that try to predict their interactions with other RNAs have been developed. Some of the fastest and more accurate tools, however, require a slow database construction step prior to the identification of interaction partners for each lncRNA. This paper presents a novel and efficient parallel database construction procedure. Benchmarking results on a 16-node multicore cluster show that our parallel algorithm can build databases up to 318 times faster than other tools in the market using just 256 CPU cores. All the code developed in this work is available to download at GitHub under the MIT License (https://github.com/UDC-GAC/pRIblast).","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel construction of RNA databases for extensive lncRNA-RNA interaction prediction\",\"authors\":\"Iñaki Amatria-Barral, J. González-Domínguez, J. Touriño\",\"doi\":\"10.1145/3555776.3577772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long non-coding RNA sequences (lncRNAs) have completely changed how scientists approach genetics. While some believe that many lncRNAs are results of spurious transcriptions, recent evidence suggests that there exist thousands of them and that they have functions and regulate key biological processes. For the experimental characterization of lncRNAs, many tools that try to predict their interactions with other RNAs have been developed. Some of the fastest and more accurate tools, however, require a slow database construction step prior to the identification of interaction partners for each lncRNA. This paper presents a novel and efficient parallel database construction procedure. Benchmarking results on a 16-node multicore cluster show that our parallel algorithm can build databases up to 318 times faster than other tools in the market using just 256 CPU cores. All the code developed in this work is available to download at GitHub under the MIT License (https://github.com/UDC-GAC/pRIblast).\",\"PeriodicalId\":42971,\"journal\":{\"name\":\"Applied Computing Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555776.3577772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

长链非编码RNA序列(lncRNAs)已经完全改变了科学家研究遗传学的方式。虽然一些人认为许多lncrna是虚假转录的结果,但最近的证据表明,它们存在数千个,并且它们具有功能并调节关键的生物过程。对于lncrna的实验表征,已经开发了许多工具,试图预测它们与其他rna的相互作用。然而,一些最快和更准确的工具需要在确定每个lncRNA的相互作用伙伴之前进行缓慢的数据库构建步骤。本文提出了一种新的、高效的并行数据库构建方法。在16节点多核集群上的基准测试结果表明,我们的并行算法构建数据库的速度比市场上仅使用256个CPU内核的其他工具快318倍。本工作中开发的所有代码都可以根据MIT许可证(https://github.com/UDC-GAC/pRIblast)在GitHub上下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel construction of RNA databases for extensive lncRNA-RNA interaction prediction
Long non-coding RNA sequences (lncRNAs) have completely changed how scientists approach genetics. While some believe that many lncRNAs are results of spurious transcriptions, recent evidence suggests that there exist thousands of them and that they have functions and regulate key biological processes. For the experimental characterization of lncRNAs, many tools that try to predict their interactions with other RNAs have been developed. Some of the fastest and more accurate tools, however, require a slow database construction step prior to the identification of interaction partners for each lncRNA. This paper presents a novel and efficient parallel database construction procedure. Benchmarking results on a 16-node multicore cluster show that our parallel algorithm can build databases up to 318 times faster than other tools in the market using just 256 CPU cores. All the code developed in this work is available to download at GitHub under the MIT License (https://github.com/UDC-GAC/pRIblast).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信