基于FPGA的SHA-3硬件流水线优化技术

Argyrios Sideris, M. Dasygenis
{"title":"基于FPGA的SHA-3硬件流水线优化技术","authors":"Argyrios Sideris, M. Dasygenis","doi":"10.3390/computation11080152","DOIUrl":null,"url":null,"abstract":"Information is transmitted between multiple insecure routing hops in text, image, video, and audio. Thus, this multi-hop digital data transfer makes secure transmission with confidentiality and integrity imperative. This protection of the transmitted data can be achieved via hashing algorithms. Furthermore, data integrity must be ensured, which is feasible using hashing algorithms. The advanced cryptographic Secure Hashing Algorithm 3 (SHA-3) is not sensitive to a cryptanalysis attack and is widely preferred due to its long-term security in various applications. However, due to the ever-increasing size of the data to be transmitted, an effective improvement is required to fulfill real-time computations with multiple types of optimization. The use of FPGAs is the ideal mechanism to improve algorithm performance and other metrics, such as throughput (Gbps), frequency (MHz), efficiency (Mbps/slices), reduction of area (slices), and power consumption. Providing upgraded computer architectures for SHA-3 is an active area of research, with continuous performance improvements. In this article, we have focused on enhancing the hardware performance metrics of throughput and efficiency by reducing the area cost of the SHA-3 for all output size lengths (224, 256, 384, and 512 bits). Our approach introduces a novel architectural design based on pipelining, which is combined with a simplified format for the round constant (RC) generator in the Iota (ι) step only consisting of 7 bits rather than the standard 64 bits. By reducing hardware resource utilization in the area and minimizing the amount of computation required at the Iota (ι) step, our design achieves the highest levels of throughput and efficiency. Through extensive experimentation, we have demonstrated the remarkable performance of our approach. Our results showcase an impressive throughput rate of 22.94 Gbps and an efficiency rate of 19.95 Mbps/slices. Our work contributes to advancing computer architectures tailored for SHA-3, therefore unlocking new possibilities for secure and high-performance data transmission.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"7 1","pages":"152"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Hardware Pipelining Optimization Technique of the SHA-3 via FPGA\",\"authors\":\"Argyrios Sideris, M. Dasygenis\",\"doi\":\"10.3390/computation11080152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information is transmitted between multiple insecure routing hops in text, image, video, and audio. Thus, this multi-hop digital data transfer makes secure transmission with confidentiality and integrity imperative. This protection of the transmitted data can be achieved via hashing algorithms. Furthermore, data integrity must be ensured, which is feasible using hashing algorithms. The advanced cryptographic Secure Hashing Algorithm 3 (SHA-3) is not sensitive to a cryptanalysis attack and is widely preferred due to its long-term security in various applications. However, due to the ever-increasing size of the data to be transmitted, an effective improvement is required to fulfill real-time computations with multiple types of optimization. The use of FPGAs is the ideal mechanism to improve algorithm performance and other metrics, such as throughput (Gbps), frequency (MHz), efficiency (Mbps/slices), reduction of area (slices), and power consumption. Providing upgraded computer architectures for SHA-3 is an active area of research, with continuous performance improvements. In this article, we have focused on enhancing the hardware performance metrics of throughput and efficiency by reducing the area cost of the SHA-3 for all output size lengths (224, 256, 384, and 512 bits). Our approach introduces a novel architectural design based on pipelining, which is combined with a simplified format for the round constant (RC) generator in the Iota (ι) step only consisting of 7 bits rather than the standard 64 bits. By reducing hardware resource utilization in the area and minimizing the amount of computation required at the Iota (ι) step, our design achieves the highest levels of throughput and efficiency. Through extensive experimentation, we have demonstrated the remarkable performance of our approach. Our results showcase an impressive throughput rate of 22.94 Gbps and an efficiency rate of 19.95 Mbps/slices. Our work contributes to advancing computer architectures tailored for SHA-3, therefore unlocking new possibilities for secure and high-performance data transmission.\",\"PeriodicalId\":10526,\"journal\":{\"name\":\"Comput.\",\"volume\":\"7 1\",\"pages\":\"152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11080152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11080152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信息在文本、图像、视频和音频的多个不安全路由跳之间传输。因此,这种多跳数字数据传输使得具有机密性和完整性的安全传输势在必行。这种对传输数据的保护可以通过散列算法来实现。此外,必须确保数据的完整性,这是可行的使用哈希算法。高级加密安全散列算法3 (SHA-3)对密码分析攻击不敏感,由于其长期安全性在各种应用中被广泛采用。然而,由于要传输的数据量不断增加,需要通过多种类型的优化来实现实时计算的有效改进。使用fpga是提高算法性能和其他指标的理想机制,例如吞吐量(Gbps)、频率(MHz)、效率(Mbps/片)、面积减少(片)和功耗。为SHA-3提供升级的计算机架构是一个活跃的研究领域,性能也在不断改进。在本文中,我们主要关注通过降低SHA-3在所有输出大小长度(224、256、384和512位)下的面积成本来增强吞吐量和效率的硬件性能指标。我们的方法引入了一种基于流水线的新架构设计,它与Iota (ι)步骤中仅由7位而不是标准64位组成的圆形常数(RC)生成器的简化格式相结合。通过减少该区域的硬件资源利用率并最大限度地减少Iota (ι)步骤所需的计算量,我们的设计实现了最高水平的吞吐量和效率。通过广泛的实验,我们已经证明了我们的方法的卓越性能。我们的结果显示了22.94 Gbps的吞吐量和19.95 Mbps/片的效率。我们的工作有助于推进为SHA-3量身定制的计算机架构,从而为安全和高性能数据传输解锁新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the Hardware Pipelining Optimization Technique of the SHA-3 via FPGA
Information is transmitted between multiple insecure routing hops in text, image, video, and audio. Thus, this multi-hop digital data transfer makes secure transmission with confidentiality and integrity imperative. This protection of the transmitted data can be achieved via hashing algorithms. Furthermore, data integrity must be ensured, which is feasible using hashing algorithms. The advanced cryptographic Secure Hashing Algorithm 3 (SHA-3) is not sensitive to a cryptanalysis attack and is widely preferred due to its long-term security in various applications. However, due to the ever-increasing size of the data to be transmitted, an effective improvement is required to fulfill real-time computations with multiple types of optimization. The use of FPGAs is the ideal mechanism to improve algorithm performance and other metrics, such as throughput (Gbps), frequency (MHz), efficiency (Mbps/slices), reduction of area (slices), and power consumption. Providing upgraded computer architectures for SHA-3 is an active area of research, with continuous performance improvements. In this article, we have focused on enhancing the hardware performance metrics of throughput and efficiency by reducing the area cost of the SHA-3 for all output size lengths (224, 256, 384, and 512 bits). Our approach introduces a novel architectural design based on pipelining, which is combined with a simplified format for the round constant (RC) generator in the Iota (ι) step only consisting of 7 bits rather than the standard 64 bits. By reducing hardware resource utilization in the area and minimizing the amount of computation required at the Iota (ι) step, our design achieves the highest levels of throughput and efficiency. Through extensive experimentation, we have demonstrated the remarkable performance of our approach. Our results showcase an impressive throughput rate of 22.94 Gbps and an efficiency rate of 19.95 Mbps/slices. Our work contributes to advancing computer architectures tailored for SHA-3, therefore unlocking new possibilities for secure and high-performance data transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信