{"title":"MgO - al2o3 - sio2、MgO - cao - sio2和MgO - cao - al2o3 - sio2玻璃的密度及MgO的结构作用","authors":"H. Doweidar","doi":"10.13036/17533562.61.1.12","DOIUrl":null,"url":null,"abstract":"Density and molar volume of MgO–Al2O3–SiO2, MgO–CaO–SiO2 and MgO–CaO–Al2O3–SiO2 glasses have been correlated with the structure by following the change in type and concentration of structural units with composition. It is assumed that for (MgO+CaO)≥Al2O3 all Al atoms form AlO4 tetrahedra. The type of modified units of SiO2 (Q3 and Q2) are determined by the ratio [(MgO+CaO)−Al2O3]/SiO2. In the case of (MgO+CaO)<Al2O3, there is a fraction of Al2O3 that forms units based on the AlO3/2 formula. The entire SiO2 content would be in the form of Q4 units. Any of the structural units has its own constant volume that is independent of the type of glass. The agreement between calculated and experimental density and molar volume strongly suggests that MgO has only a modifier role in the studied glasses. Formation of assumed MgO4, MgO5 and MgO6 polyhedra can be due to change in coordination of oxygen, rather being looked as structural units.","PeriodicalId":49696,"journal":{"name":"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B","volume":"88 1","pages":"1-10"},"PeriodicalIF":0.3000,"publicationDate":"2020-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Density of MgO–Al2O3–SiO2, MgO–CaO–SiO2 and MgO–CaO–Al2O3–SiO2 glasses and the structural role of MgO\",\"authors\":\"H. Doweidar\",\"doi\":\"10.13036/17533562.61.1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density and molar volume of MgO–Al2O3–SiO2, MgO–CaO–SiO2 and MgO–CaO–Al2O3–SiO2 glasses have been correlated with the structure by following the change in type and concentration of structural units with composition. It is assumed that for (MgO+CaO)≥Al2O3 all Al atoms form AlO4 tetrahedra. The type of modified units of SiO2 (Q3 and Q2) are determined by the ratio [(MgO+CaO)−Al2O3]/SiO2. In the case of (MgO+CaO)<Al2O3, there is a fraction of Al2O3 that forms units based on the AlO3/2 formula. The entire SiO2 content would be in the form of Q4 units. Any of the structural units has its own constant volume that is independent of the type of glass. The agreement between calculated and experimental density and molar volume strongly suggests that MgO has only a modifier role in the studied glasses. Formation of assumed MgO4, MgO5 and MgO6 polyhedra can be due to change in coordination of oxygen, rather being looked as structural units.\",\"PeriodicalId\":49696,\"journal\":{\"name\":\"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B\",\"volume\":\"88 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.13036/17533562.61.1.12\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.13036/17533562.61.1.12","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Density of MgO–Al2O3–SiO2, MgO–CaO–SiO2 and MgO–CaO–Al2O3–SiO2 glasses and the structural role of MgO
Density and molar volume of MgO–Al2O3–SiO2, MgO–CaO–SiO2 and MgO–CaO–Al2O3–SiO2 glasses have been correlated with the structure by following the change in type and concentration of structural units with composition. It is assumed that for (MgO+CaO)≥Al2O3 all Al atoms form AlO4 tetrahedra. The type of modified units of SiO2 (Q3 and Q2) are determined by the ratio [(MgO+CaO)−Al2O3]/SiO2. In the case of (MgO+CaO)
期刊介绍:
Physics and Chemistry of Glasses accepts papers of a more purely scientific interest concerned with glasses and their structure or properties. Thus the subject of a paper will normally determine the journal in which it will be published.