CHAP-成人:CHAP-Ault:一种可靠有效的算法,利用髋部佩戴式加速度计的数据对 35 岁成年人的坐姿进行分类并测量坐姿模式。

John Bellettiere, Supun Nakandala, Fatima Tuz-Zahra, Elisabeth A H Winkler, Paul R Hibbing, Genevieve N Healy, David W Dunstan, Neville Owen, Mikael Anne Greenwood-Hickman, Dori E Rosenberg, Jingjing Zou, Jordan A Carlson, Chongzhi Di, Lindsay W Dillon, Marta M Jankowska, Andrea Z LaCroix, Nicola D Ridgers, Rong Zablocki, Arun Kumar, Loki Natarajan
{"title":"CHAP-成人:CHAP-Ault:一种可靠有效的算法,利用髋部佩戴式加速度计的数据对 35 岁成年人的坐姿进行分类并测量坐姿模式。","authors":"John Bellettiere, Supun Nakandala, Fatima Tuz-Zahra, Elisabeth A H Winkler, Paul R Hibbing, Genevieve N Healy, David W Dunstan, Neville Owen, Mikael Anne Greenwood-Hickman, Dori E Rosenberg, Jingjing Zou, Jordan A Carlson, Chongzhi Di, Lindsay W Dillon, Marta M Jankowska, Andrea Z LaCroix, Nicola D Ridgers, Rong Zablocki, Arun Kumar, Loki Natarajan","doi":"10.1123/jmpb.2021-0062","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults.</p><p><strong>Methods: </strong>Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35-99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training.</p><p><strong>Results: </strong>Mean errors (activPAL - CHAP-Adult) and 95% limits of agreement were: sedentary time -10.5 (-63.0, 42.0) min/day, breaks in sedentary time 1.9 (-9.2, 12.9) breaks/day, mean bout duration -0.6 (-4.0, 2.7) min, usual bout duration -1.4 (-8.3, 5.4) min, alpha .00 (-.04, .04), and time in ≥30-min bouts -15.1 (-84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: -2.0% (4.0%), -4.7% (12.2%), 4.1% (11.6%), -4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson's correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m<sup>2</sup>.</p><p><strong>Conclusions: </strong>Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting.</p>","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803054/pdf/","citationCount":"0","resultStr":"{\"title\":\"CHAP-Adult: A Reliable and Valid Algorithm to Classify Sitting and Measure Sitting Patterns Using Data From Hip-Worn Accelerometers in Adults Aged 35.\",\"authors\":\"John Bellettiere, Supun Nakandala, Fatima Tuz-Zahra, Elisabeth A H Winkler, Paul R Hibbing, Genevieve N Healy, David W Dunstan, Neville Owen, Mikael Anne Greenwood-Hickman, Dori E Rosenberg, Jingjing Zou, Jordan A Carlson, Chongzhi Di, Lindsay W Dillon, Marta M Jankowska, Andrea Z LaCroix, Nicola D Ridgers, Rong Zablocki, Arun Kumar, Loki Natarajan\",\"doi\":\"10.1123/jmpb.2021-0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults.</p><p><strong>Methods: </strong>Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35-99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training.</p><p><strong>Results: </strong>Mean errors (activPAL - CHAP-Adult) and 95% limits of agreement were: sedentary time -10.5 (-63.0, 42.0) min/day, breaks in sedentary time 1.9 (-9.2, 12.9) breaks/day, mean bout duration -0.6 (-4.0, 2.7) min, usual bout duration -1.4 (-8.3, 5.4) min, alpha .00 (-.04, .04), and time in ≥30-min bouts -15.1 (-84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: -2.0% (4.0%), -4.7% (12.2%), 4.1% (11.6%), -4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson's correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m<sup>2</sup>.</p><p><strong>Conclusions: </strong>Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting.</p>\",\"PeriodicalId\":73572,\"journal\":{\"name\":\"Journal for the measurement of physical behaviour\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803054/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for the measurement of physical behaviour\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1123/jmpb.2021-0062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for the measurement of physical behaviour","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1123/jmpb.2021-0062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:髋戴式加速度计很常用,但以每分钟 100 次为临界点处理的数据并不能准确测量坐姿。我们开发并验证了一个模型,该模型可使用来自不同年龄段老年人的髋部佩戴式加速度计数据对坐姿和坐姿模式进行准确分类:方法:以 30Hz 三轴髋部佩戴式加速度计数据为输入,以 activPAL 坐姿/非坐姿事件为基本事实,训练深度学习模型。来自两大洲 981 名 35-99 岁成年人的数据被用于训练模型,我们称之为 CHAP-Adult(卷积神经网络髋关节加速度计姿势-成人)。在随机选取的 419 名未纳入模型训练的成人中进行了验证:平均误差(activPAL - CHAP-Adult)和 95% 的一致性范围为:久坐时间 -10.5 (-63.0, 42.0) 分钟/天,久坐休息时间 1.9 (-9.2, 12.9) 分钟/天,平均休息时间 1.9 (-9.2, 12.9) 分钟/天。9) 次/天,平均阵痛持续时间 -0.6 (-4.0, 2.7) 分钟,通常阵痛持续时间 -1.4 (-8.3, 5.4) 分钟,α值为 0.00 (-.04, 0.04),≥30 分钟阵痛的时间为 -15.1 (-84.3, 54.1) 分钟/天。平均误差(和绝对误差)分别为-2.0%(4.0%)、-4.7%(12.2%)、4.1%(11.6%)、-4.4%(9.6%)、0.0%(1.4%)和 5.4%(9.6%)。皮尔逊相关系数分别为.96、.92、.86、.92、.78 和 .96。不同年龄、性别和体重指数组的误差基本一致,体重指数≥30 kg/m2 组的误差最大:总之,这些有力的验证结果表明,CHAP-Adult 是使用髋部佩戴式加速度计对坐姿和坐姿模式进行流动测量的重大进步。在外部验证之前,它可广泛应用于世界各地的数据,以扩大对久坐的流行病学和健康后果的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHAP-Adult: A Reliable and Valid Algorithm to Classify Sitting and Measure Sitting Patterns Using Data From Hip-Worn Accelerometers in Adults Aged 35.

Background: Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults.

Methods: Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35-99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training.

Results: Mean errors (activPAL - CHAP-Adult) and 95% limits of agreement were: sedentary time -10.5 (-63.0, 42.0) min/day, breaks in sedentary time 1.9 (-9.2, 12.9) breaks/day, mean bout duration -0.6 (-4.0, 2.7) min, usual bout duration -1.4 (-8.3, 5.4) min, alpha .00 (-.04, .04), and time in ≥30-min bouts -15.1 (-84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: -2.0% (4.0%), -4.7% (12.2%), 4.1% (11.6%), -4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson's correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m2.

Conclusions: Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信