John Bellettiere, Supun Nakandala, Fatima Tuz-Zahra, Elisabeth A H Winkler, Paul R Hibbing, Genevieve N Healy, David W Dunstan, Neville Owen, Mikael Anne Greenwood-Hickman, Dori E Rosenberg, Jingjing Zou, Jordan A Carlson, Chongzhi Di, Lindsay W Dillon, Marta M Jankowska, Andrea Z LaCroix, Nicola D Ridgers, Rong Zablocki, Arun Kumar, Loki Natarajan
{"title":"CHAP-成人:CHAP-Ault:一种可靠有效的算法,利用髋部佩戴式加速度计的数据对 35 岁成年人的坐姿进行分类并测量坐姿模式。","authors":"John Bellettiere, Supun Nakandala, Fatima Tuz-Zahra, Elisabeth A H Winkler, Paul R Hibbing, Genevieve N Healy, David W Dunstan, Neville Owen, Mikael Anne Greenwood-Hickman, Dori E Rosenberg, Jingjing Zou, Jordan A Carlson, Chongzhi Di, Lindsay W Dillon, Marta M Jankowska, Andrea Z LaCroix, Nicola D Ridgers, Rong Zablocki, Arun Kumar, Loki Natarajan","doi":"10.1123/jmpb.2021-0062","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults.</p><p><strong>Methods: </strong>Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35-99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training.</p><p><strong>Results: </strong>Mean errors (activPAL - CHAP-Adult) and 95% limits of agreement were: sedentary time -10.5 (-63.0, 42.0) min/day, breaks in sedentary time 1.9 (-9.2, 12.9) breaks/day, mean bout duration -0.6 (-4.0, 2.7) min, usual bout duration -1.4 (-8.3, 5.4) min, alpha .00 (-.04, .04), and time in ≥30-min bouts -15.1 (-84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: -2.0% (4.0%), -4.7% (12.2%), 4.1% (11.6%), -4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson's correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m<sup>2</sup>.</p><p><strong>Conclusions: </strong>Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting.</p>","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803054/pdf/","citationCount":"0","resultStr":"{\"title\":\"CHAP-Adult: A Reliable and Valid Algorithm to Classify Sitting and Measure Sitting Patterns Using Data From Hip-Worn Accelerometers in Adults Aged 35.\",\"authors\":\"John Bellettiere, Supun Nakandala, Fatima Tuz-Zahra, Elisabeth A H Winkler, Paul R Hibbing, Genevieve N Healy, David W Dunstan, Neville Owen, Mikael Anne Greenwood-Hickman, Dori E Rosenberg, Jingjing Zou, Jordan A Carlson, Chongzhi Di, Lindsay W Dillon, Marta M Jankowska, Andrea Z LaCroix, Nicola D Ridgers, Rong Zablocki, Arun Kumar, Loki Natarajan\",\"doi\":\"10.1123/jmpb.2021-0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults.</p><p><strong>Methods: </strong>Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35-99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training.</p><p><strong>Results: </strong>Mean errors (activPAL - CHAP-Adult) and 95% limits of agreement were: sedentary time -10.5 (-63.0, 42.0) min/day, breaks in sedentary time 1.9 (-9.2, 12.9) breaks/day, mean bout duration -0.6 (-4.0, 2.7) min, usual bout duration -1.4 (-8.3, 5.4) min, alpha .00 (-.04, .04), and time in ≥30-min bouts -15.1 (-84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: -2.0% (4.0%), -4.7% (12.2%), 4.1% (11.6%), -4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson's correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m<sup>2</sup>.</p><p><strong>Conclusions: </strong>Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting.</p>\",\"PeriodicalId\":73572,\"journal\":{\"name\":\"Journal for the measurement of physical behaviour\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803054/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for the measurement of physical behaviour\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1123/jmpb.2021-0062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for the measurement of physical behaviour","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1123/jmpb.2021-0062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
CHAP-Adult: A Reliable and Valid Algorithm to Classify Sitting and Measure Sitting Patterns Using Data From Hip-Worn Accelerometers in Adults Aged 35.
Background: Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults.
Methods: Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35-99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training.
Results: Mean errors (activPAL - CHAP-Adult) and 95% limits of agreement were: sedentary time -10.5 (-63.0, 42.0) min/day, breaks in sedentary time 1.9 (-9.2, 12.9) breaks/day, mean bout duration -0.6 (-4.0, 2.7) min, usual bout duration -1.4 (-8.3, 5.4) min, alpha .00 (-.04, .04), and time in ≥30-min bouts -15.1 (-84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: -2.0% (4.0%), -4.7% (12.2%), 4.1% (11.6%), -4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson's correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m2.
Conclusions: Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting.