基于语法的压缩及其在符号音乐分析中的应用

IF 0.5 2区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Tiasa Mondol, Daniel G. Brown
{"title":"基于语法的压缩及其在符号音乐分析中的应用","authors":"Tiasa Mondol, Daniel G. Brown","doi":"10.1080/17459737.2021.2002956","DOIUrl":null,"url":null,"abstract":"We apply Context-free Grammars (CFG) to measure the structural information content of a symbolic music string. CFGs are appropriate to this domain because they highlight hierarchical patterns, and their dictionary of rules can be used for compression. We adapt this approach to estimate the conditional Kolmogorov complexity of a string with a concise CFG of another string. Thus, a related string may be compressed with the production rules for the first string. We then define an information distance between two symbolic music strings, and show that this measure can separate genres, composers and musical styles. Next, we adapt our approach to a model-selection problem, expressing the model as a CFG with restricted size, generated from a set of representative strings. We show that a well-generated CFG for a composer identifies characteristic patterns that can significantly compress other pieces from the same composer, while not being useful on pieces from different composers. We identify further opportunities of this approach, including using CFGs for generating new music in the style of a composer.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Grammar-based compression and its use in symbolic music analysis\",\"authors\":\"Tiasa Mondol, Daniel G. Brown\",\"doi\":\"10.1080/17459737.2021.2002956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply Context-free Grammars (CFG) to measure the structural information content of a symbolic music string. CFGs are appropriate to this domain because they highlight hierarchical patterns, and their dictionary of rules can be used for compression. We adapt this approach to estimate the conditional Kolmogorov complexity of a string with a concise CFG of another string. Thus, a related string may be compressed with the production rules for the first string. We then define an information distance between two symbolic music strings, and show that this measure can separate genres, composers and musical styles. Next, we adapt our approach to a model-selection problem, expressing the model as a CFG with restricted size, generated from a set of representative strings. We show that a well-generated CFG for a composer identifies characteristic patterns that can significantly compress other pieces from the same composer, while not being useful on pieces from different composers. We identify further opportunities of this approach, including using CFGs for generating new music in the style of a composer.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2021.2002956\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2021.2002956","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

我们应用上下文无关语法(CFG)来测量符号音乐字符串的结构信息内容。cfg非常适合这个领域,因为它们突出了分层模式,并且它们的规则字典可用于压缩。我们将这种方法应用于用另一个字符串的简洁CFG估计字符串的条件Kolmogorov复杂度。因此,可以用第一个字符串的产生规则压缩相关字符串。然后,我们定义了两个符号音乐字符串之间的信息距离,并表明这种度量可以区分流派,作曲家和音乐风格。接下来,我们将我们的方法用于模型选择问题,将模型表示为具有限制大小的CFG,由一组具有代表性的字符串生成。我们表明,为作曲家生成的良好CFG识别出可以显著压缩来自同一作曲家的其他作品的特征模式,而对来自不同作曲家的作品无效。我们确定了这种方法的进一步机会,包括使用cfg以作曲家的风格生成新音乐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grammar-based compression and its use in symbolic music analysis
We apply Context-free Grammars (CFG) to measure the structural information content of a symbolic music string. CFGs are appropriate to this domain because they highlight hierarchical patterns, and their dictionary of rules can be used for compression. We adapt this approach to estimate the conditional Kolmogorov complexity of a string with a concise CFG of another string. Thus, a related string may be compressed with the production rules for the first string. We then define an information distance between two symbolic music strings, and show that this measure can separate genres, composers and musical styles. Next, we adapt our approach to a model-selection problem, expressing the model as a CFG with restricted size, generated from a set of representative strings. We show that a well-generated CFG for a composer identifies characteristic patterns that can significantly compress other pieces from the same composer, while not being useful on pieces from different composers. We identify further opportunities of this approach, including using CFGs for generating new music in the style of a composer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and Music
Journal of Mathematics and Music 数学-数学跨学科应用
CiteScore
1.90
自引率
18.20%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信