{"title":"基于语法的压缩及其在符号音乐分析中的应用","authors":"Tiasa Mondol, Daniel G. Brown","doi":"10.1080/17459737.2021.2002956","DOIUrl":null,"url":null,"abstract":"We apply Context-free Grammars (CFG) to measure the structural information content of a symbolic music string. CFGs are appropriate to this domain because they highlight hierarchical patterns, and their dictionary of rules can be used for compression. We adapt this approach to estimate the conditional Kolmogorov complexity of a string with a concise CFG of another string. Thus, a related string may be compressed with the production rules for the first string. We then define an information distance between two symbolic music strings, and show that this measure can separate genres, composers and musical styles. Next, we adapt our approach to a model-selection problem, expressing the model as a CFG with restricted size, generated from a set of representative strings. We show that a well-generated CFG for a composer identifies characteristic patterns that can significantly compress other pieces from the same composer, while not being useful on pieces from different composers. We identify further opportunities of this approach, including using CFGs for generating new music in the style of a composer.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Grammar-based compression and its use in symbolic music analysis\",\"authors\":\"Tiasa Mondol, Daniel G. Brown\",\"doi\":\"10.1080/17459737.2021.2002956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply Context-free Grammars (CFG) to measure the structural information content of a symbolic music string. CFGs are appropriate to this domain because they highlight hierarchical patterns, and their dictionary of rules can be used for compression. We adapt this approach to estimate the conditional Kolmogorov complexity of a string with a concise CFG of another string. Thus, a related string may be compressed with the production rules for the first string. We then define an information distance between two symbolic music strings, and show that this measure can separate genres, composers and musical styles. Next, we adapt our approach to a model-selection problem, expressing the model as a CFG with restricted size, generated from a set of representative strings. We show that a well-generated CFG for a composer identifies characteristic patterns that can significantly compress other pieces from the same composer, while not being useful on pieces from different composers. We identify further opportunities of this approach, including using CFGs for generating new music in the style of a composer.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2021.2002956\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2021.2002956","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Grammar-based compression and its use in symbolic music analysis
We apply Context-free Grammars (CFG) to measure the structural information content of a symbolic music string. CFGs are appropriate to this domain because they highlight hierarchical patterns, and their dictionary of rules can be used for compression. We adapt this approach to estimate the conditional Kolmogorov complexity of a string with a concise CFG of another string. Thus, a related string may be compressed with the production rules for the first string. We then define an information distance between two symbolic music strings, and show that this measure can separate genres, composers and musical styles. Next, we adapt our approach to a model-selection problem, expressing the model as a CFG with restricted size, generated from a set of representative strings. We show that a well-generated CFG for a composer identifies characteristic patterns that can significantly compress other pieces from the same composer, while not being useful on pieces from different composers. We identify further opportunities of this approach, including using CFGs for generating new music in the style of a composer.
期刊介绍:
Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.