用光纤陀螺仪研究钢筋混凝土框架结构的旋转运动

IF 1.3 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Kurzych, L. Jaroszewicz, J. Kowalski, B. Sakowicz
{"title":"用光纤陀螺仪研究钢筋混凝土框架结构的旋转运动","authors":"A. Kurzych, L. Jaroszewicz, J. Kowalski, B. Sakowicz","doi":"10.24425/opelre.2020.132503","DOIUrl":null,"url":null,"abstract":"Article history: Received 25 Mar. 2020 Received in revised form 01 Apr. 2020 Accepted 01 Apr. 2020 This paper deals with an issue of a rotational motion impact on a construction and presents civil engineering applications of a fiber optic rotational seismograph named Fiber-Optic System for Rotational Events & Phenomena Monitoring. It has been designed for a longterm building monitoring and structural rotations’ recording. It is based on the Sagnac effect which enables to detect one-axis rotational motion in a direct way and without any reference system. It enables to detect a rotation component in the wide range of a signal amplitude from 10 rad/s to 10 rad/s, as well as a frequency from DC to 1000 Hz. Data presented in this paper show the behavior of a reinforced concrete frame construction on different floors. Several measurements were carried out by placing the applied sensor on different floor levels of a building. The laboratory and in-situ measurements confirmed that Fiber-Optic System for Rotational Events & Phenomena Monitoring is an accurate and suitable device for applications in civil engineering.","PeriodicalId":54670,"journal":{"name":"Opto-Electronics Review","volume":"18 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope\",\"authors\":\"A. Kurzych, L. Jaroszewicz, J. Kowalski, B. Sakowicz\",\"doi\":\"10.24425/opelre.2020.132503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Article history: Received 25 Mar. 2020 Received in revised form 01 Apr. 2020 Accepted 01 Apr. 2020 This paper deals with an issue of a rotational motion impact on a construction and presents civil engineering applications of a fiber optic rotational seismograph named Fiber-Optic System for Rotational Events & Phenomena Monitoring. It has been designed for a longterm building monitoring and structural rotations’ recording. It is based on the Sagnac effect which enables to detect one-axis rotational motion in a direct way and without any reference system. It enables to detect a rotation component in the wide range of a signal amplitude from 10 rad/s to 10 rad/s, as well as a frequency from DC to 1000 Hz. Data presented in this paper show the behavior of a reinforced concrete frame construction on different floors. Several measurements were carried out by placing the applied sensor on different floor levels of a building. The laboratory and in-situ measurements confirmed that Fiber-Optic System for Rotational Events & Phenomena Monitoring is an accurate and suitable device for applications in civil engineering.\",\"PeriodicalId\":54670,\"journal\":{\"name\":\"Opto-Electronics Review\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opto-Electronics Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/opelre.2020.132503\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronics Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/opelre.2020.132503","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了旋转运动对建筑的影响问题,并介绍了用于旋转事件和现象监测的光纤系统光纤旋转地震仪的土木工程应用。它是为长期的建筑监测和结构旋转记录而设计的。它基于Sagnac效应,可以直接检测单轴旋转运动,而无需任何参考系统。它能够检测信号幅度从10 rad/s到10 rad/s的宽范围内的旋转分量,以及频率从DC到1000 Hz。本文提供的数据显示了钢筋混凝土框架结构在不同楼层上的性能。通过将应用的传感器放置在建筑物的不同楼层进行了几次测量。实验室和现场测量结果表明,光纤旋转事件和现象监测系统是一种准确、适用于土木工程应用的设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope
Article history: Received 25 Mar. 2020 Received in revised form 01 Apr. 2020 Accepted 01 Apr. 2020 This paper deals with an issue of a rotational motion impact on a construction and presents civil engineering applications of a fiber optic rotational seismograph named Fiber-Optic System for Rotational Events & Phenomena Monitoring. It has been designed for a longterm building monitoring and structural rotations’ recording. It is based on the Sagnac effect which enables to detect one-axis rotational motion in a direct way and without any reference system. It enables to detect a rotation component in the wide range of a signal amplitude from 10 rad/s to 10 rad/s, as well as a frequency from DC to 1000 Hz. Data presented in this paper show the behavior of a reinforced concrete frame construction on different floors. Several measurements were carried out by placing the applied sensor on different floor levels of a building. The laboratory and in-situ measurements confirmed that Fiber-Optic System for Rotational Events & Phenomena Monitoring is an accurate and suitable device for applications in civil engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opto-Electronics Review
Opto-Electronics Review 工程技术-工程:电子与电气
CiteScore
1.90
自引率
12.50%
发文量
0
审稿时长
>12 weeks
期刊介绍: Opto-Electronics Review is peer-reviewed and quarterly published by the Polish Academy of Sciences (PAN) and the Association of Polish Electrical Engineers (SEP) in electronic version. It covers the whole field of theory, experimental techniques, and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. The scope of the published papers includes any aspect of scientific, technological, technical and industrial works concerning generation, transmission, transformation, detection and application of light and other forms of radiative energy whose quantum unit is photon. Papers covering novel topics extending the frontiers in optoelectronics or photonics are very encouraged. It has been established for the publication of high quality original papers from the following fields: Optical Design and Applications, Image Processing Metamaterials, Optoelectronic Materials, Micro-Opto-Electro-Mechanical Systems, Infrared Physics and Technology, Modelling of Optoelectronic Devices, Semiconductor Lasers Technology and Fabrication of Optoelectronic Devices, Photonic Crystals, Laser Physics, Technology and Applications, Optical Sensors and Applications, Photovoltaics, Biomedical Optics and Photonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信