基于深度学习的移动机器人导航视觉地图生成

Carlos A. García-Pintos, Noé G. Aldana-Murillo, Emmanuel Ovalle-Magallanes, Edgar A. Martínez
{"title":"基于深度学习的移动机器人导航视觉地图生成","authors":"Carlos A. García-Pintos, Noé G. Aldana-Murillo, Emmanuel Ovalle-Magallanes, Edgar A. Martínez","doi":"10.3390/eng4020092","DOIUrl":null,"url":null,"abstract":"Visual map-based robot navigation is a strategy that only uses the robot vision system, involving four fundamental stages: learning or mapping, localization, planning, and navigation. Therefore, it is paramount to model the environment optimally to perform the aforementioned stages. In this paper, we propose a novel framework to generate a visual map for environments both indoors and outdoors. The visual map comprises key images sharing visual information between consecutive key images. This learning stage employs a pre-trained local feature transformer (LoFTR) constrained with a 3D projective transformation (a fundamental matrix) between two consecutive key images. Outliers are efficiently detected using marginalizing sample consensus (MAGSAC) while estimating the fundamental matrix. We conducted extensive experiments to validate our approach in six different datasets and compare its performance against hand-crafted methods.","PeriodicalId":10630,"journal":{"name":"Comput. Chem. Eng.","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning-Based Visual Map Generation for Mobile Robot Navigation\",\"authors\":\"Carlos A. García-Pintos, Noé G. Aldana-Murillo, Emmanuel Ovalle-Magallanes, Edgar A. Martínez\",\"doi\":\"10.3390/eng4020092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual map-based robot navigation is a strategy that only uses the robot vision system, involving four fundamental stages: learning or mapping, localization, planning, and navigation. Therefore, it is paramount to model the environment optimally to perform the aforementioned stages. In this paper, we propose a novel framework to generate a visual map for environments both indoors and outdoors. The visual map comprises key images sharing visual information between consecutive key images. This learning stage employs a pre-trained local feature transformer (LoFTR) constrained with a 3D projective transformation (a fundamental matrix) between two consecutive key images. Outliers are efficiently detected using marginalizing sample consensus (MAGSAC) while estimating the fundamental matrix. We conducted extensive experiments to validate our approach in six different datasets and compare its performance against hand-crafted methods.\",\"PeriodicalId\":10630,\"journal\":{\"name\":\"Comput. Chem. Eng.\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eng4020092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng4020092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于视觉地图的机器人导航是一种仅使用机器人视觉系统的策略,包括学习或绘图、定位、规划和导航四个基本阶段。因此,对环境进行最佳建模以执行上述阶段是至关重要的。在本文中,我们提出了一个新的框架来生成室内和室外环境的视觉地图。视觉地图包括在连续的关键图像之间共享视觉信息的关键图像。这个学习阶段使用了一个预训练的局部特征转换器(LoFTR),约束了两个连续关键图像之间的3D投影变换(基本矩阵)。在估计基本矩阵的同时,利用边际化样本一致性(MAGSAC)有效地检测出异常值。我们进行了大量的实验来验证我们的方法在六个不同的数据集,并比较其性能与手工制作的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning-Based Visual Map Generation for Mobile Robot Navigation
Visual map-based robot navigation is a strategy that only uses the robot vision system, involving four fundamental stages: learning or mapping, localization, planning, and navigation. Therefore, it is paramount to model the environment optimally to perform the aforementioned stages. In this paper, we propose a novel framework to generate a visual map for environments both indoors and outdoors. The visual map comprises key images sharing visual information between consecutive key images. This learning stage employs a pre-trained local feature transformer (LoFTR) constrained with a 3D projective transformation (a fundamental matrix) between two consecutive key images. Outliers are efficiently detected using marginalizing sample consensus (MAGSAC) while estimating the fundamental matrix. We conducted extensive experiments to validate our approach in six different datasets and compare its performance against hand-crafted methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信