{"title":"基于聚合无功补偿技术的电压稳定协调控制机制","authors":"J. Ali","doi":"10.1109/EEEIC.2018.8493811","DOIUrl":null,"url":null,"abstract":"Reactive power provision is an essential ancillary service, which opens up many opportunities for different actors of power system. This reactive power is essential to cope up for the inductive capacitive effects of the long transmission lines, and due to the varying nature of the loads. The reactive power management leads to voltage stability, and thus the paper deals with the review of the most common procedures for the compensation of reactive power. The paper then develops a model for a coal-fired power plant, and then compares the performance of different compensation techniques in terms of costs, efficiency in terms of real power losses, and performance capability in terms of response time and amount of reactive power. The paper then realizes the trade-off between different techniques, and then an aggregation of different techniques are used to strategize the coordinated control of techniques with respect to the requirements. Finally, a topology of this coordinated control mechanism is developed in accordance with the Italian regulations.","PeriodicalId":6563,"journal":{"name":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"92 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coordinated Control Mechanism for Voltage Stability Utilizing Aggregation of Reactive Power Compensation Techniques\",\"authors\":\"J. Ali\",\"doi\":\"10.1109/EEEIC.2018.8493811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactive power provision is an essential ancillary service, which opens up many opportunities for different actors of power system. This reactive power is essential to cope up for the inductive capacitive effects of the long transmission lines, and due to the varying nature of the loads. The reactive power management leads to voltage stability, and thus the paper deals with the review of the most common procedures for the compensation of reactive power. The paper then develops a model for a coal-fired power plant, and then compares the performance of different compensation techniques in terms of costs, efficiency in terms of real power losses, and performance capability in terms of response time and amount of reactive power. The paper then realizes the trade-off between different techniques, and then an aggregation of different techniques are used to strategize the coordinated control of techniques with respect to the requirements. Finally, a topology of this coordinated control mechanism is developed in accordance with the Italian regulations.\",\"PeriodicalId\":6563,\"journal\":{\"name\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"92 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2018.8493811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2018.8493811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coordinated Control Mechanism for Voltage Stability Utilizing Aggregation of Reactive Power Compensation Techniques
Reactive power provision is an essential ancillary service, which opens up many opportunities for different actors of power system. This reactive power is essential to cope up for the inductive capacitive effects of the long transmission lines, and due to the varying nature of the loads. The reactive power management leads to voltage stability, and thus the paper deals with the review of the most common procedures for the compensation of reactive power. The paper then develops a model for a coal-fired power plant, and then compares the performance of different compensation techniques in terms of costs, efficiency in terms of real power losses, and performance capability in terms of response time and amount of reactive power. The paper then realizes the trade-off between different techniques, and then an aggregation of different techniques are used to strategize the coordinated control of techniques with respect to the requirements. Finally, a topology of this coordinated control mechanism is developed in accordance with the Italian regulations.