M. F. Fathalla, M. A. Al Hosani, I. Mohamed, A. A. Al Bairaq, Djamal Kherroubi, A. Abdullayev, Allen Roopal
{"title":"优化油管和尾管完井设计,提高现有井的天然气产量:ADNOC陆上油田案例研究","authors":"M. F. Fathalla, M. A. Al Hosani, I. Mohamed, A. A. Al Bairaq, Djamal Kherroubi, A. Abdullayev, Allen Roopal","doi":"10.2118/207430-ms","DOIUrl":null,"url":null,"abstract":"\n An onshore gas field contains several gas wells which have low–intermittent production rates. The poor production has been attributed to liquid loading issue in the wellbore. This study will investigate the impact of optimizing the tubing and liner completion design to improve the gas production rates from the wells. Numerous sensitivity runs are carried out with varying tubing and liner dimensions, to identity optimal downhole completions design.\n The study begins by identifying weak wells having severe gas production problems. Once the weak wells have been identified, wellbore schematics for those wells are studied. Simulation runs are performed with the current downhole completion design and this will be used as the base case. Several completion designs are considered to minimize the effect of liquid loading in the wells; these include reducing the tubing diameter but keeping the existing liner diameter the same, keeping the original tubing diameter the same but only reducing the liner diameter, extending the tubing to the Total Depth (TD) while keeping the original tubing diameter, and extending a reduced diameter tubing string to the TD.\n The primary cause of the liquid loading seems to be the reduced velocity of the incoming gas from the reservoir as it flows through the wellbore. A simulation study was performed using the various completion designs to optimize the well completion and achieve higher gas velocities in the weak wells. The results of the study showed significant improvement in gas production rates when the tubing diameter and liner diameter were reduced, providing further evidence that increased velocity of the incoming fluids due to restricted flow led to less liquid loading.\n The paper demonstrates the impact of downhole completion design on the productivity of the gas wells. The study shows that revisiting the existing completion designs and optimizing them using commercial simulators can lead to significant improvement in well production rates. It is also noted that restricting the flow near the sand face increases the velocity of the incoming fluid and reduces liquid loading in the wells.","PeriodicalId":10981,"journal":{"name":"Day 4 Thu, November 18, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing Tubing and Liner Completion Design to Improve Gas Production from Existing Wells: Case Study for ADNOC Onshore Field Abu Dhabi, UAE\",\"authors\":\"M. F. Fathalla, M. A. Al Hosani, I. Mohamed, A. A. Al Bairaq, Djamal Kherroubi, A. Abdullayev, Allen Roopal\",\"doi\":\"10.2118/207430-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An onshore gas field contains several gas wells which have low–intermittent production rates. The poor production has been attributed to liquid loading issue in the wellbore. This study will investigate the impact of optimizing the tubing and liner completion design to improve the gas production rates from the wells. Numerous sensitivity runs are carried out with varying tubing and liner dimensions, to identity optimal downhole completions design.\\n The study begins by identifying weak wells having severe gas production problems. Once the weak wells have been identified, wellbore schematics for those wells are studied. Simulation runs are performed with the current downhole completion design and this will be used as the base case. Several completion designs are considered to minimize the effect of liquid loading in the wells; these include reducing the tubing diameter but keeping the existing liner diameter the same, keeping the original tubing diameter the same but only reducing the liner diameter, extending the tubing to the Total Depth (TD) while keeping the original tubing diameter, and extending a reduced diameter tubing string to the TD.\\n The primary cause of the liquid loading seems to be the reduced velocity of the incoming gas from the reservoir as it flows through the wellbore. A simulation study was performed using the various completion designs to optimize the well completion and achieve higher gas velocities in the weak wells. The results of the study showed significant improvement in gas production rates when the tubing diameter and liner diameter were reduced, providing further evidence that increased velocity of the incoming fluids due to restricted flow led to less liquid loading.\\n The paper demonstrates the impact of downhole completion design on the productivity of the gas wells. The study shows that revisiting the existing completion designs and optimizing them using commercial simulators can lead to significant improvement in well production rates. It is also noted that restricting the flow near the sand face increases the velocity of the incoming fluid and reduces liquid loading in the wells.\",\"PeriodicalId\":10981,\"journal\":{\"name\":\"Day 4 Thu, November 18, 2021\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, November 18, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207430-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 18, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207430-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Tubing and Liner Completion Design to Improve Gas Production from Existing Wells: Case Study for ADNOC Onshore Field Abu Dhabi, UAE
An onshore gas field contains several gas wells which have low–intermittent production rates. The poor production has been attributed to liquid loading issue in the wellbore. This study will investigate the impact of optimizing the tubing and liner completion design to improve the gas production rates from the wells. Numerous sensitivity runs are carried out with varying tubing and liner dimensions, to identity optimal downhole completions design.
The study begins by identifying weak wells having severe gas production problems. Once the weak wells have been identified, wellbore schematics for those wells are studied. Simulation runs are performed with the current downhole completion design and this will be used as the base case. Several completion designs are considered to minimize the effect of liquid loading in the wells; these include reducing the tubing diameter but keeping the existing liner diameter the same, keeping the original tubing diameter the same but only reducing the liner diameter, extending the tubing to the Total Depth (TD) while keeping the original tubing diameter, and extending a reduced diameter tubing string to the TD.
The primary cause of the liquid loading seems to be the reduced velocity of the incoming gas from the reservoir as it flows through the wellbore. A simulation study was performed using the various completion designs to optimize the well completion and achieve higher gas velocities in the weak wells. The results of the study showed significant improvement in gas production rates when the tubing diameter and liner diameter were reduced, providing further evidence that increased velocity of the incoming fluids due to restricted flow led to less liquid loading.
The paper demonstrates the impact of downhole completion design on the productivity of the gas wells. The study shows that revisiting the existing completion designs and optimizing them using commercial simulators can lead to significant improvement in well production rates. It is also noted that restricting the flow near the sand face increases the velocity of the incoming fluid and reduces liquid loading in the wells.