关于球的点有限覆盖的注释

C. D. Bernardi
{"title":"关于球的点有限覆盖的注释","authors":"C. D. Bernardi","doi":"10.1090/PROC/15510","DOIUrl":null,"url":null,"abstract":"We provide an elementary proof of a result by V.P.~Fonf and C.~Zanco on point-finite coverings of separable Hilbert spaces. Indeed, by using a variation of the famous argument introduced by J.~Lindenstrauss and R.R.~Phelps \\cite{LP} to prove that the unit ball of a reflexive infinite-dimensional Banach space has uncountably many extreme points, we prove the following result: Let $X$ be an infinite-dimensional Hilbert space satisfying $\\mathrm{dens}(X)<2^{\\aleph_0}$, then $X$ does not admit point-finite coverings by open or closed balls, each of positive radius. \nIn the second part of the paper, we follow the argument introduced by V.P. Fonf, M. Levin, and C. Zanco in \\cite{FonfLevZan14} to prove that the previous result holds also in infinite-dimensional Banach spaces that are both uniformly rotund and uniformly smooth.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on point-finite coverings by balls\",\"authors\":\"C. D. Bernardi\",\"doi\":\"10.1090/PROC/15510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide an elementary proof of a result by V.P.~Fonf and C.~Zanco on point-finite coverings of separable Hilbert spaces. Indeed, by using a variation of the famous argument introduced by J.~Lindenstrauss and R.R.~Phelps \\\\cite{LP} to prove that the unit ball of a reflexive infinite-dimensional Banach space has uncountably many extreme points, we prove the following result: Let $X$ be an infinite-dimensional Hilbert space satisfying $\\\\mathrm{dens}(X)<2^{\\\\aleph_0}$, then $X$ does not admit point-finite coverings by open or closed balls, each of positive radius. \\nIn the second part of the paper, we follow the argument introduced by V.P. Fonf, M. Levin, and C. Zanco in \\\\cite{FonfLevZan14} to prove that the previous result holds also in infinite-dimensional Banach spaces that are both uniformly rotund and uniformly smooth.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/15510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给出了vp . Fonf和C. Zanco关于可分Hilbert空间点有限覆盖的一个结果的初等证明。实际上,通过对j.l indenstrauss和r.r.p Phelps \cite{LP}提出的证明无限维自反巴拿赫空间的单位球有无数个极值点的著名论证的一种变化,我们证明了以下结果:设$X$是满足$\mathrm{dens}(X)<2^{\aleph_0}$的无限维希尔伯特空间,则$X$不允许有点有限的开放球或闭球覆盖,且每个球的半径都是正的。在论文的第二部分,我们根据V.P. Fonf, M. Levin,和C. Zanco在\cite{FonfLevZan14}中引入的论点,证明了在匀圆和匀光滑的无限维Banach空间中,前面的结果也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on point-finite coverings by balls
We provide an elementary proof of a result by V.P.~Fonf and C.~Zanco on point-finite coverings of separable Hilbert spaces. Indeed, by using a variation of the famous argument introduced by J.~Lindenstrauss and R.R.~Phelps \cite{LP} to prove that the unit ball of a reflexive infinite-dimensional Banach space has uncountably many extreme points, we prove the following result: Let $X$ be an infinite-dimensional Hilbert space satisfying $\mathrm{dens}(X)<2^{\aleph_0}$, then $X$ does not admit point-finite coverings by open or closed balls, each of positive radius. In the second part of the paper, we follow the argument introduced by V.P. Fonf, M. Levin, and C. Zanco in \cite{FonfLevZan14} to prove that the previous result holds also in infinite-dimensional Banach spaces that are both uniformly rotund and uniformly smooth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信