双分数布朗运动驱动的随机微分方程趋势函数的非参数估计

Pub Date : 2020-07-01 DOI:10.2478/ausm-2020-0008
Abdelmalik Keddi, Fethi Madani, A. Bouchentouf
{"title":"双分数布朗运动驱动的随机微分方程趋势函数的非参数估计","authors":"Abdelmalik Keddi, Fethi Madani, A. Bouchentouf","doi":"10.2478/ausm-2020-0008","DOIUrl":null,"url":null,"abstract":"Abstract The main objective of this paper is to investigate the problem of estimating the trend function St = S(xt) for process satisfying stochastic differential equations of the type dXt=S(Xt)dt+εdBtH,K, X0=x0, 0≤t≤T, {\\rm{d}}{{\\rm{X}}_{\\rm{t}}} = {\\rm{S}}\\left( {{{\\rm{X}}_{\\rm{t}}}} \\right){\\rm{dt + }}\\varepsilon {\\rm{dB}}_{\\rm{t}}^{{\\rm{H,K}}},\\,{{\\rm{X}}_{\\rm{0}}} = {{\\rm{x}}_{\\rm{0}}},\\,0 \\le {\\rm{t}} \\le {\\rm{T,}} where { BtH,K,t≥0 {\\rm{B}}_{\\rm{t}}^{{\\rm{H,K}}},{\\rm{t}} \\ge {\\rm{0}} } is a bifractional Brownian motion with known parameters H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1). We estimate the unknown function S(xt) by a kernel estimator ̂St and obtain the asymptotic properties as ε → 0. Finally, a numerical example is provided.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric estimation of trend function for stochastic differential equations driven by a bifractional Brownian motion\",\"authors\":\"Abdelmalik Keddi, Fethi Madani, A. Bouchentouf\",\"doi\":\"10.2478/ausm-2020-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main objective of this paper is to investigate the problem of estimating the trend function St = S(xt) for process satisfying stochastic differential equations of the type dXt=S(Xt)dt+εdBtH,K, X0=x0, 0≤t≤T, {\\\\rm{d}}{{\\\\rm{X}}_{\\\\rm{t}}} = {\\\\rm{S}}\\\\left( {{{\\\\rm{X}}_{\\\\rm{t}}}} \\\\right){\\\\rm{dt + }}\\\\varepsilon {\\\\rm{dB}}_{\\\\rm{t}}^{{\\\\rm{H,K}}},\\\\,{{\\\\rm{X}}_{\\\\rm{0}}} = {{\\\\rm{x}}_{\\\\rm{0}}},\\\\,0 \\\\le {\\\\rm{t}} \\\\le {\\\\rm{T,}} where { BtH,K,t≥0 {\\\\rm{B}}_{\\\\rm{t}}^{{\\\\rm{H,K}}},{\\\\rm{t}} \\\\ge {\\\\rm{0}} } is a bifractional Brownian motion with known parameters H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1). We estimate the unknown function S(xt) by a kernel estimator ̂St and obtain the asymptotic properties as ε → 0. Finally, a numerical example is provided.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的主要目的是研究满足dXt=S(xt) dt+εdBtH,K, X0= X0,0≤t≤t,_ = {\rm{d}}{{\rm{X}}{\rm{t}}}{\rm{S}}\left (_ {{{\rm{X}}{\rm{t}}}}\right) {\rm{dt + }}\varepsilon _^,\,_ = _,\,0 {\rm{dB}}{\rm{t}}{{\rm{H,K}}}{{\rm{X}}{\rm{0}}}{{\rm{x}}{\rm{0}}}\le{\rm{t}}\le的过程趋势函数St =S(xt)的估计问题,其中BtH,K,t≥0 _^,{\rm{T,}}{{\rm{B}}{\rm{t}}{{\rm{H,K}}}{\rm{t}}\ge是一个已知参数H∈(0,1),K∈(0,1),HK∈(1/2)的双分数布朗运动。1).我们用核估计量t估计未知函数S(xt),得到其渐近性质ε→0。最后给出了数值算例。{\rm{0}}}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Nonparametric estimation of trend function for stochastic differential equations driven by a bifractional Brownian motion
Abstract The main objective of this paper is to investigate the problem of estimating the trend function St = S(xt) for process satisfying stochastic differential equations of the type dXt=S(Xt)dt+εdBtH,K, X0=x0, 0≤t≤T, {\rm{d}}{{\rm{X}}_{\rm{t}}} = {\rm{S}}\left( {{{\rm{X}}_{\rm{t}}}} \right){\rm{dt + }}\varepsilon {\rm{dB}}_{\rm{t}}^{{\rm{H,K}}},\,{{\rm{X}}_{\rm{0}}} = {{\rm{x}}_{\rm{0}}},\,0 \le {\rm{t}} \le {\rm{T,}} where { BtH,K,t≥0 {\rm{B}}_{\rm{t}}^{{\rm{H,K}}},{\rm{t}} \ge {\rm{0}} } is a bifractional Brownian motion with known parameters H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1). We estimate the unknown function S(xt) by a kernel estimator ̂St and obtain the asymptotic properties as ε → 0. Finally, a numerical example is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信