Zuming Li, Yufa Sun, Ming Yang, Peiquan Tang, Zhifeng Wu
{"title":"紧凑型双极化磁电偶极天线,适用于2G/3G/LTE应用","authors":"Zuming Li, Yufa Sun, Ming Yang, Peiquan Tang, Zhifeng Wu","doi":"10.1109/PIERS-FALL.2017.8293338","DOIUrl":null,"url":null,"abstract":"A compact ±45° dual-polarized magneto-electric (ME) dipole base station antenna is proposed for 2G/3G/LTE applications. The antenna is excited by two Γ-shaped probes placed at a convenient location and two orthogonally octagonal loop electric dipoles are employed to achieve a wide impedance bandwidth. A stable antenna gain and a stable radiation pattern are realized by using a rectangular box-shaped reflector instead of planar one. The antenna is prototype and measured. Measured results show overlapped impedance bandwidth is 58% with standing-wave ratio (SWR) ≤ 1.5 from 1.68 to 3.05 GHz, port-to-port isolation is large than 26 dB within the bandwidth, and stable antenna gains of 8.6 ± 0.8 dBi and 8.3 ± 0.6 dBi for port 1 and port 2, respectively. Nearly symmetrical radiation patterns with low back lobe radiation both in horizontal and vertical planes, and narrow beamwidth can be also obtained. Moreover, the size of the antenna is very compact, which is only 0.79λ0 × 0.79λ0 × 0.26λ0. The proposed antenna can be used for multiband base stations in next generation communication systems.","PeriodicalId":39469,"journal":{"name":"Advances in Engineering Education","volume":"28 1","pages":"1338-1344"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A compact dual-polarized magneto-electric dipole antenna for 2G/3G/LTE applications\",\"authors\":\"Zuming Li, Yufa Sun, Ming Yang, Peiquan Tang, Zhifeng Wu\",\"doi\":\"10.1109/PIERS-FALL.2017.8293338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compact ±45° dual-polarized magneto-electric (ME) dipole base station antenna is proposed for 2G/3G/LTE applications. The antenna is excited by two Γ-shaped probes placed at a convenient location and two orthogonally octagonal loop electric dipoles are employed to achieve a wide impedance bandwidth. A stable antenna gain and a stable radiation pattern are realized by using a rectangular box-shaped reflector instead of planar one. The antenna is prototype and measured. Measured results show overlapped impedance bandwidth is 58% with standing-wave ratio (SWR) ≤ 1.5 from 1.68 to 3.05 GHz, port-to-port isolation is large than 26 dB within the bandwidth, and stable antenna gains of 8.6 ± 0.8 dBi and 8.3 ± 0.6 dBi for port 1 and port 2, respectively. Nearly symmetrical radiation patterns with low back lobe radiation both in horizontal and vertical planes, and narrow beamwidth can be also obtained. Moreover, the size of the antenna is very compact, which is only 0.79λ0 × 0.79λ0 × 0.26λ0. The proposed antenna can be used for multiband base stations in next generation communication systems.\",\"PeriodicalId\":39469,\"journal\":{\"name\":\"Advances in Engineering Education\",\"volume\":\"28 1\",\"pages\":\"1338-1344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIERS-FALL.2017.8293338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIERS-FALL.2017.8293338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
A compact dual-polarized magneto-electric dipole antenna for 2G/3G/LTE applications
A compact ±45° dual-polarized magneto-electric (ME) dipole base station antenna is proposed for 2G/3G/LTE applications. The antenna is excited by two Γ-shaped probes placed at a convenient location and two orthogonally octagonal loop electric dipoles are employed to achieve a wide impedance bandwidth. A stable antenna gain and a stable radiation pattern are realized by using a rectangular box-shaped reflector instead of planar one. The antenna is prototype and measured. Measured results show overlapped impedance bandwidth is 58% with standing-wave ratio (SWR) ≤ 1.5 from 1.68 to 3.05 GHz, port-to-port isolation is large than 26 dB within the bandwidth, and stable antenna gains of 8.6 ± 0.8 dBi and 8.3 ± 0.6 dBi for port 1 and port 2, respectively. Nearly symmetrical radiation patterns with low back lobe radiation both in horizontal and vertical planes, and narrow beamwidth can be also obtained. Moreover, the size of the antenna is very compact, which is only 0.79λ0 × 0.79λ0 × 0.26λ0. The proposed antenna can be used for multiband base stations in next generation communication systems.
期刊介绍:
The journal publishes articles on a wide variety of topics related to documented advances in engineering education practice. Topics may include but are not limited to innovations in course and curriculum design, teaching, and assessment both within and outside of the classroom that have led to improved student learning.