{"title":"量子纠缠,平方和和对数秩猜想","authors":"B. Barak, Pravesh Kothari, David Steurer","doi":"10.1145/3055399.3055488","DOIUrl":null,"url":null,"abstract":"For every constant ε>0, we give an exp(Õ(∞n))-time algorithm for the 1 vs 1 - ε Best Separable State (BSS) problem of distinguishing, given an n2 x n2 matrix ℳ corresponding to a quantum measurement, between the case that there is a separable (i.e., non-entangled) state ρ that ℳ accepts with probability 1, and the case that every separable state is accepted with probability at most 1 - ε. Equivalently, our algorithm takes the description of a subspace 𝒲 ⊆ 𝔽n2 (where 𝔽 can be either the real or complex field) and distinguishes between the case that contains a rank one matrix, and the case that every rank one matrix is at least ε far (in 𝓁2 distance) from 𝒲. To the best of our knowledge, this is the first improvement over the brute-force exp(n)-time algorithm for this problem. Our algorithm is based on the sum-of-squares hierarchy and its analysis is inspired by Lovett's proof (STOC '14, JACM '16) that the communication complexity of every rank-n Boolean matrix is bounded by Õ(√n).","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Quantum entanglement, sum of squares, and the log rank conjecture\",\"authors\":\"B. Barak, Pravesh Kothari, David Steurer\",\"doi\":\"10.1145/3055399.3055488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For every constant ε>0, we give an exp(Õ(∞n))-time algorithm for the 1 vs 1 - ε Best Separable State (BSS) problem of distinguishing, given an n2 x n2 matrix ℳ corresponding to a quantum measurement, between the case that there is a separable (i.e., non-entangled) state ρ that ℳ accepts with probability 1, and the case that every separable state is accepted with probability at most 1 - ε. Equivalently, our algorithm takes the description of a subspace 𝒲 ⊆ 𝔽n2 (where 𝔽 can be either the real or complex field) and distinguishes between the case that contains a rank one matrix, and the case that every rank one matrix is at least ε far (in 𝓁2 distance) from 𝒲. To the best of our knowledge, this is the first improvement over the brute-force exp(n)-time algorithm for this problem. Our algorithm is based on the sum-of-squares hierarchy and its analysis is inspired by Lovett's proof (STOC '14, JACM '16) that the communication complexity of every rank-n Boolean matrix is bounded by Õ(√n).\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
摘要
对于ε>0的每一个常数,我们给出了一个exp(Õ(∞n))时间算法来解决1 vs 1 - ε最佳可分离状态(BSS)问题,该问题给出了一个与量子测量相对应的n2 x n2矩阵,在存在一个可分离(即非纠缠)状态ρ且其接受概率为1的情况下,与存在一个可分离(即非纠缠)状态ρ且其接受概率不超过1 - ε的情况下进行区分。同样地,我们的算法取一子空间𝒲≥𝔽n2(其中的∈可以是实域也可以是复域)的描述,并区分包含一个秩1矩阵的情况,以及每个秩1矩阵离𝒲至少有ε远(以𝓁2为距离)的情况。据我们所知,这是针对该问题的暴力破解exp(n)时间算法的第一个改进。我们的算法基于平方和层次结构,其分析灵感来自于Lovett的证明(STOC '14, JACM '16),即每个n阶布尔矩阵的通信复杂性都由Õ(√n)限制。
Quantum entanglement, sum of squares, and the log rank conjecture
For every constant ε>0, we give an exp(Õ(∞n))-time algorithm for the 1 vs 1 - ε Best Separable State (BSS) problem of distinguishing, given an n2 x n2 matrix ℳ corresponding to a quantum measurement, between the case that there is a separable (i.e., non-entangled) state ρ that ℳ accepts with probability 1, and the case that every separable state is accepted with probability at most 1 - ε. Equivalently, our algorithm takes the description of a subspace 𝒲 ⊆ 𝔽n2 (where 𝔽 can be either the real or complex field) and distinguishes between the case that contains a rank one matrix, and the case that every rank one matrix is at least ε far (in 𝓁2 distance) from 𝒲. To the best of our knowledge, this is the first improvement over the brute-force exp(n)-time algorithm for this problem. Our algorithm is based on the sum-of-squares hierarchy and its analysis is inspired by Lovett's proof (STOC '14, JACM '16) that the communication complexity of every rank-n Boolean matrix is bounded by Õ(√n).