排序约旦序列在线性时间使用水平链接搜索树

Q4 Mathematics
Kurt Hoffmann, Kurt Mehlhorn, Pierre Rosenstiehl, Robert E. Tarjan
{"title":"排序约旦序列在线性时间使用水平链接搜索树","authors":"Kurt Hoffmann,&nbsp;Kurt Mehlhorn,&nbsp;Pierre Rosenstiehl,&nbsp;Robert E. Tarjan","doi":"10.1016/S0019-9958(86)80033-X","DOIUrl":null,"url":null,"abstract":"<div><p>For a Jordan curve <em>C</em> in the plane nowhere tangent to the <em>x</em> axis, let <em>x</em><sub>1</sub>, <em>x</em><sub>2</sub>,…, <em>x<sub>n</sub></em> be the abscissas of the intersection points of <em>C</em> with the <em>x</em> axis, listed in the order the points occur on <em>C.</em> We call <em>x</em><sub>1</sub>, <em>x</em><sub>2</sub>,…, <em>x<sub>n</sub></em> a <em>Jordan sequence</em>. In this paper we describe an <em>O</em>(<em>n</em>)-time algorithm for recognizing and sorting Jordan sequences. The problem of sorting such sequences arises in computational geometry and computational geography. Our algorithm is based on a reduction of the recognition and sorting problem to a list-splitting problem. To solve the list-splitting problem we use level-linked search trees.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80033-X","citationCount":"121","resultStr":"{\"title\":\"Sorting jordan sequences in linear time using level-linked search trees\",\"authors\":\"Kurt Hoffmann,&nbsp;Kurt Mehlhorn,&nbsp;Pierre Rosenstiehl,&nbsp;Robert E. Tarjan\",\"doi\":\"10.1016/S0019-9958(86)80033-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a Jordan curve <em>C</em> in the plane nowhere tangent to the <em>x</em> axis, let <em>x</em><sub>1</sub>, <em>x</em><sub>2</sub>,…, <em>x<sub>n</sub></em> be the abscissas of the intersection points of <em>C</em> with the <em>x</em> axis, listed in the order the points occur on <em>C.</em> We call <em>x</em><sub>1</sub>, <em>x</em><sub>2</sub>,…, <em>x<sub>n</sub></em> a <em>Jordan sequence</em>. In this paper we describe an <em>O</em>(<em>n</em>)-time algorithm for recognizing and sorting Jordan sequences. The problem of sorting such sequences arises in computational geometry and computational geography. Our algorithm is based on a reduction of the recognition and sorting problem to a list-splitting problem. To solve the list-splitting problem we use level-linked search trees.</p></div>\",\"PeriodicalId\":38164,\"journal\":{\"name\":\"信息与控制\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80033-X\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息与控制\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001999588680033X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001999588680033X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 121

摘要

对于任意位置与x轴相切的平面上的约当曲线C,设x1, x2,…,xn为C与x轴交点的横坐标,按点在C上出现的顺序排列。我们称x1, x2,…,xn为约当序列。本文描述了一种O(n)时间的Jordan序列识别和排序算法。排序这种序列的问题出现在计算几何和计算地理中。我们的算法基于将识别和排序问题简化为列表分割问题。为了解决列表分割问题,我们使用层次链接搜索树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sorting jordan sequences in linear time using level-linked search trees

For a Jordan curve C in the plane nowhere tangent to the x axis, let x1, x2,…, xn be the abscissas of the intersection points of C with the x axis, listed in the order the points occur on C. We call x1, x2,…, xn a Jordan sequence. In this paper we describe an O(n)-time algorithm for recognizing and sorting Jordan sequences. The problem of sorting such sequences arises in computational geometry and computational geography. Our algorithm is based on a reduction of the recognition and sorting problem to a list-splitting problem. To solve the list-splitting problem we use level-linked search trees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信