利用图像传感器、磁强计和惯性传感器估计THR手术中股骨部件的方位和深度。

Jiyang Gao, Shaojie Su, Hong Chen, Zhihua Wang
{"title":"利用图像传感器、磁强计和惯性传感器估计THR手术中股骨部件的方位和深度。","authors":"Jiyang Gao, Shaojie Su, Hong Chen, Zhihua Wang","doi":"10.1109/EMBC.2015.7318958","DOIUrl":null,"url":null,"abstract":"Malposition of the acetabular and femoral component has long been recognized as an important cause of dislocation after total hip replacement (THR) surgeries. In order to help surgeons improve the positioning accuracy of the components, a visual-aided system for THR surgeries that could estimate orientation and depth of femoral component is proposed. The sensors are fixed inside the femoral prosthesis trial and checkerboard patterns are printed on the internal surface of the acetabular prosthesis trial. An extended Kalman filter is designed to fuse the data from inertial sensors and the magnetometer orientation estimation. A novel image processing algorithm for depth estimation is developed. The algorithms have been evaluated under the simulation with rotation quaternion and translation vector and the experimental results shows that the root mean square error (RMSE) of the orientation estimation is less then 0.05 degree and the RMSE for depth estimation is 1mm. Finally, the femoral head is displayed in 3D graphics in real time to help surgeons with the component positioning.","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":"24 1","pages":"2737-40"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orientation and depth estimation for femoral components using image sensor, magnetometer and inertial sensors in THR surgeries.\",\"authors\":\"Jiyang Gao, Shaojie Su, Hong Chen, Zhihua Wang\",\"doi\":\"10.1109/EMBC.2015.7318958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malposition of the acetabular and femoral component has long been recognized as an important cause of dislocation after total hip replacement (THR) surgeries. In order to help surgeons improve the positioning accuracy of the components, a visual-aided system for THR surgeries that could estimate orientation and depth of femoral component is proposed. The sensors are fixed inside the femoral prosthesis trial and checkerboard patterns are printed on the internal surface of the acetabular prosthesis trial. An extended Kalman filter is designed to fuse the data from inertial sensors and the magnetometer orientation estimation. A novel image processing algorithm for depth estimation is developed. The algorithms have been evaluated under the simulation with rotation quaternion and translation vector and the experimental results shows that the root mean square error (RMSE) of the orientation estimation is less then 0.05 degree and the RMSE for depth estimation is 1mm. Finally, the femoral head is displayed in 3D graphics in real time to help surgeons with the component positioning.\",\"PeriodicalId\":72689,\"journal\":{\"name\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"volume\":\"24 1\",\"pages\":\"2737-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC.2015.7318958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC.2015.7318958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

髋臼和股骨假体的错位一直被认为是全髋关节置换术后脱位的重要原因。为了帮助外科医生提高假体的定位精度,提出了一种用于THR手术的视觉辅助系统,可以估计股骨假体的方向和深度。传感器被固定在股骨假体试验体内,棋盘格图案被印在髋臼假体试验的内表面。设计了一种扩展卡尔曼滤波器,用于融合惯性传感器数据和磁强计方向估计数据。提出了一种新的深度估计图像处理算法。在旋转四元数和平移向量仿真下对算法进行了评价,实验结果表明,方向估计的均方根误差(RMSE)小于0.05度,深度估计的均方根误差(RMSE)为1mm。最后,股骨头以3D图形实时显示,以帮助外科医生定位部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orientation and depth estimation for femoral components using image sensor, magnetometer and inertial sensors in THR surgeries.
Malposition of the acetabular and femoral component has long been recognized as an important cause of dislocation after total hip replacement (THR) surgeries. In order to help surgeons improve the positioning accuracy of the components, a visual-aided system for THR surgeries that could estimate orientation and depth of femoral component is proposed. The sensors are fixed inside the femoral prosthesis trial and checkerboard patterns are printed on the internal surface of the acetabular prosthesis trial. An extended Kalman filter is designed to fuse the data from inertial sensors and the magnetometer orientation estimation. A novel image processing algorithm for depth estimation is developed. The algorithms have been evaluated under the simulation with rotation quaternion and translation vector and the experimental results shows that the root mean square error (RMSE) of the orientation estimation is less then 0.05 degree and the RMSE for depth estimation is 1mm. Finally, the femoral head is displayed in 3D graphics in real time to help surgeons with the component positioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信