合作提升:需求vs贪婪的权力管理

Indrani Paul, Srilatha Manne, Manish Arora, W. Bircher, S. Yalamanchili
{"title":"合作提升:需求vs贪婪的权力管理","authors":"Indrani Paul, Srilatha Manne, Manish Arora, W. Bircher, S. Yalamanchili","doi":"10.1145/2485922.2485947","DOIUrl":null,"url":null,"abstract":"This paper examines the interaction between thermal management techniques and power boosting in a state-of-the-art heterogeneous processor consisting of a set of CPU and GPU cores. We show that for classes of applications that utilize both the CPU and the GPU, modern boost algorithms that greedily seek to convert thermal headroom into performance can interact with thermal coupling effects between the CPU and the GPU to degrade performance. We first examine the causes of this behavior and explain the interaction between thermal coupling, performance coupling, and workload behavior. Then we propose a dynamic power-management approach called cooperative boosting (CB) to allocate power dynamically between CPU and GPU in a manner that balances thermal coupling against the needs of performance coupling to optimize performance under a given thermal constraint. Through real hardware-based measurements, we evaluate CB against a state-of-the-practice boost algorithm and show that overall application performance and power savings increase by 10% and 8% (up to 52% and 34%), respectively, resulting in average energy efficiency improvement of 25% (up to 76%) over a wide range of benchmarks.","PeriodicalId":20555,"journal":{"name":"Proceedings of the 40th Annual International Symposium on Computer Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Cooperative boosting: needy versus greedy power management\",\"authors\":\"Indrani Paul, Srilatha Manne, Manish Arora, W. Bircher, S. Yalamanchili\",\"doi\":\"10.1145/2485922.2485947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the interaction between thermal management techniques and power boosting in a state-of-the-art heterogeneous processor consisting of a set of CPU and GPU cores. We show that for classes of applications that utilize both the CPU and the GPU, modern boost algorithms that greedily seek to convert thermal headroom into performance can interact with thermal coupling effects between the CPU and the GPU to degrade performance. We first examine the causes of this behavior and explain the interaction between thermal coupling, performance coupling, and workload behavior. Then we propose a dynamic power-management approach called cooperative boosting (CB) to allocate power dynamically between CPU and GPU in a manner that balances thermal coupling against the needs of performance coupling to optimize performance under a given thermal constraint. Through real hardware-based measurements, we evaluate CB against a state-of-the-practice boost algorithm and show that overall application performance and power savings increase by 10% and 8% (up to 52% and 34%), respectively, resulting in average energy efficiency improvement of 25% (up to 76%) over a wide range of benchmarks.\",\"PeriodicalId\":20555,\"journal\":{\"name\":\"Proceedings of the 40th Annual International Symposium on Computer Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2485922.2485947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2485922.2485947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

本文研究了由一组CPU和GPU内核组成的最先进的异构处理器中热管理技术和功率提升之间的相互作用。我们表明,对于同时利用CPU和GPU的应用程序类别,贪婪地寻求将热余量转换为性能的现代增强算法可能与CPU和GPU之间的热耦合效应相互作用,从而降低性能。我们首先检查这种行为的原因,并解释热耦合、性能耦合和工作负载行为之间的相互作用。然后,我们提出了一种称为协同提升(CB)的动态功率管理方法,在CPU和GPU之间动态分配功率,以平衡热耦合和性能耦合的需求,从而在给定的热约束下优化性能。通过真实的基于硬件的测量,我们根据实践状态的提升算法评估了CB,并表明总体应用程序性能和功耗分别提高了10%和8%(高达52%和34%),从而在广泛的基准测试范围内平均能源效率提高了25%(高达76%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative boosting: needy versus greedy power management
This paper examines the interaction between thermal management techniques and power boosting in a state-of-the-art heterogeneous processor consisting of a set of CPU and GPU cores. We show that for classes of applications that utilize both the CPU and the GPU, modern boost algorithms that greedily seek to convert thermal headroom into performance can interact with thermal coupling effects between the CPU and the GPU to degrade performance. We first examine the causes of this behavior and explain the interaction between thermal coupling, performance coupling, and workload behavior. Then we propose a dynamic power-management approach called cooperative boosting (CB) to allocate power dynamically between CPU and GPU in a manner that balances thermal coupling against the needs of performance coupling to optimize performance under a given thermal constraint. Through real hardware-based measurements, we evaluate CB against a state-of-the-practice boost algorithm and show that overall application performance and power savings increase by 10% and 8% (up to 52% and 34%), respectively, resulting in average energy efficiency improvement of 25% (up to 76%) over a wide range of benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信