生物网络重编程的算法-信息演算

H. Zenil
{"title":"生物网络重编程的算法-信息演算","authors":"H. Zenil","doi":"10.1109/BIBM.2016.7822485","DOIUrl":null,"url":null,"abstract":"Despite extensive attempts to characterize systems and networks based upon metrics drawn from traditional statistics, Shannon entropy, and graph theory to understand systems and networks to reveal their causal mechanisms without making too many unjustified assumptions remains still as one of the greatest challenges in complexity science and science in general, specially beyond traditional statistics and so-called machine learning. Knowing the causal mechanisms that govern a system allows not only the prediction of the system's behavior but the manipulation and controlled reprogramming of the system. Here we introduce a formal interventional calculus based upon universal principles drawn from the theory of computability and algorithmic probability, thereby enabling better approaches to the question of causal discovery. By performing sequences of fully controlled perturbations, changes in the algorithmic content of a system can be classified into the effects they have according to their shift towards or away from algorithmic randomness, thereby inducing a ranking of system's elements. This spectral dimension unmasks an algorithmic separation between components conditioned upon the perturbations and endowing us with a suite of powerful parameter-free algorithms to reprogram the system's underlying program. The predictive and explanatory power of these novel conceptual tools are introduced and numerical experiments are illustrated on various types of networks. We show how the algorithmic content of a network is connected to its possible dynamics and how the instant variation of the sensitivity, depth, and the number of attractors in a network is accessible by an analysis of its algorithmic information landscape. The results demonstrate how to unveil causal mechanisms to infer essential properties, including the dynamics of evolving networks. We introduce measures and methods for system reprogrammability even with no, or limited, access to the system kinetic equations or probability distributions. We expect this interventional calculus to be broadly applicable for predictive causal interventions and we anticipate it to be instrumental in the challenge of causality discovery in science from complex data.","PeriodicalId":73283,"journal":{"name":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","volume":"87 1","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An algorithmic-information calculus for reprogramming biological networks\",\"authors\":\"H. Zenil\",\"doi\":\"10.1109/BIBM.2016.7822485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite extensive attempts to characterize systems and networks based upon metrics drawn from traditional statistics, Shannon entropy, and graph theory to understand systems and networks to reveal their causal mechanisms without making too many unjustified assumptions remains still as one of the greatest challenges in complexity science and science in general, specially beyond traditional statistics and so-called machine learning. Knowing the causal mechanisms that govern a system allows not only the prediction of the system's behavior but the manipulation and controlled reprogramming of the system. Here we introduce a formal interventional calculus based upon universal principles drawn from the theory of computability and algorithmic probability, thereby enabling better approaches to the question of causal discovery. By performing sequences of fully controlled perturbations, changes in the algorithmic content of a system can be classified into the effects they have according to their shift towards or away from algorithmic randomness, thereby inducing a ranking of system's elements. This spectral dimension unmasks an algorithmic separation between components conditioned upon the perturbations and endowing us with a suite of powerful parameter-free algorithms to reprogram the system's underlying program. The predictive and explanatory power of these novel conceptual tools are introduced and numerical experiments are illustrated on various types of networks. We show how the algorithmic content of a network is connected to its possible dynamics and how the instant variation of the sensitivity, depth, and the number of attractors in a network is accessible by an analysis of its algorithmic information landscape. The results demonstrate how to unveil causal mechanisms to infer essential properties, including the dynamics of evolving networks. We introduce measures and methods for system reprogrammability even with no, or limited, access to the system kinetic equations or probability distributions. We expect this interventional calculus to be broadly applicable for predictive causal interventions and we anticipate it to be instrumental in the challenge of causality discovery in science from complex data.\",\"PeriodicalId\":73283,\"journal\":{\"name\":\"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine\",\"volume\":\"87 1\",\"pages\":\"12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管人们广泛尝试根据传统统计学的指标来描述系统和网络,但香农熵和图论在不做出太多不合理假设的情况下理解系统和网络以揭示其因果机制,仍然是复杂性科学和一般科学中最大的挑战之一,特别是超越传统统计学和所谓的机器学习。了解控制系统的因果机制不仅可以预测系统的行为,还可以操纵和控制系统的重新编程。在这里,我们介绍了一种基于可计算性理论和算法概率论中得出的普遍原理的正式介入演算,从而能够更好地解决因果发现问题。通过执行一系列完全可控的扰动,系统的算法内容的变化可以根据其向算法随机性或远离算法随机性的转变,分类为它们所产生的影响,从而归纳出系统元素的排名。这个谱维揭示了受扰动影响的组件之间的算法分离,并赋予我们一套强大的无参数算法来重新编程系统的底层程序。介绍了这些新概念工具的预测和解释能力,并在各种类型的网络上进行了数值实验。我们展示了网络的算法内容如何与其可能的动态相关联,以及如何通过分析其算法信息景观来访问网络中吸引子的灵敏度、深度和数量的即时变化。结果展示了如何揭示因果机制来推断基本属性,包括进化网络的动态。我们介绍了系统可重编程性的措施和方法,即使没有或有限地访问系统动力学方程或概率分布。我们希望这种介入演算能广泛适用于预测性因果干预,我们希望它能在复杂数据中发现科学因果关系的挑战中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithmic-information calculus for reprogramming biological networks
Despite extensive attempts to characterize systems and networks based upon metrics drawn from traditional statistics, Shannon entropy, and graph theory to understand systems and networks to reveal their causal mechanisms without making too many unjustified assumptions remains still as one of the greatest challenges in complexity science and science in general, specially beyond traditional statistics and so-called machine learning. Knowing the causal mechanisms that govern a system allows not only the prediction of the system's behavior but the manipulation and controlled reprogramming of the system. Here we introduce a formal interventional calculus based upon universal principles drawn from the theory of computability and algorithmic probability, thereby enabling better approaches to the question of causal discovery. By performing sequences of fully controlled perturbations, changes in the algorithmic content of a system can be classified into the effects they have according to their shift towards or away from algorithmic randomness, thereby inducing a ranking of system's elements. This spectral dimension unmasks an algorithmic separation between components conditioned upon the perturbations and endowing us with a suite of powerful parameter-free algorithms to reprogram the system's underlying program. The predictive and explanatory power of these novel conceptual tools are introduced and numerical experiments are illustrated on various types of networks. We show how the algorithmic content of a network is connected to its possible dynamics and how the instant variation of the sensitivity, depth, and the number of attractors in a network is accessible by an analysis of its algorithmic information landscape. The results demonstrate how to unveil causal mechanisms to infer essential properties, including the dynamics of evolving networks. We introduce measures and methods for system reprogrammability even with no, or limited, access to the system kinetic equations or probability distributions. We expect this interventional calculus to be broadly applicable for predictive causal interventions and we anticipate it to be instrumental in the challenge of causality discovery in science from complex data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信