双曲域上一类三阶退化型抛物-双曲方程的Dirichlet边值问题

IF 0.5 Q3 MATHEMATICS
Zh.A. Balkizov
{"title":"双曲域上一类三阶退化型抛物-双曲方程的Dirichlet边值问题","authors":"Zh.A. Balkizov","doi":"10.13108/2017-9-2-25","DOIUrl":null,"url":null,"abstract":". In the work we study an analogue of Tricomi equation for a third order parabolic-hyperbolic equation with smaller derivatives having multiple characteristics. Under certain conditions for the given functions and parameters involved in the considered equation, we prove unique solvability theorem for the studied problem. The uniqueness of the solution is proved by means of the generalized Tricomi method, while the existence is proved via the method of integral equations.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"91 1","pages":"25-39"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dirichlet boundary value problem for a third order parabolic-hyperbolic equation with degenerating type and order in the hyperbolicity domain\",\"authors\":\"Zh.A. Balkizov\",\"doi\":\"10.13108/2017-9-2-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In the work we study an analogue of Tricomi equation for a third order parabolic-hyperbolic equation with smaller derivatives having multiple characteristics. Under certain conditions for the given functions and parameters involved in the considered equation, we prove unique solvability theorem for the studied problem. The uniqueness of the solution is proved by means of the generalized Tricomi method, while the existence is proved via the method of integral equations.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"91 1\",\"pages\":\"25-39\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-2-25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-2-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

. 本文研究了具有多重特征的小导数三阶抛物-双曲型方程的Tricomi方程的模拟。在一定条件下,对于所考虑的方程所包含的给定函数和参数,我们证明了所研究问题的唯一可解定理。用广义Tricomi方法证明了解的唯一性,用积分方程方法证明了解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dirichlet boundary value problem for a third order parabolic-hyperbolic equation with degenerating type and order in the hyperbolicity domain
. In the work we study an analogue of Tricomi equation for a third order parabolic-hyperbolic equation with smaller derivatives having multiple characteristics. Under certain conditions for the given functions and parameters involved in the considered equation, we prove unique solvability theorem for the studied problem. The uniqueness of the solution is proved by means of the generalized Tricomi method, while the existence is proved via the method of integral equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信