基数-2 rn -编码的乘法算法和二元补数的乘法算法

Jean-Luc Beuchat, J. Muller
{"title":"基数-2 rn -编码的乘法算法和二元补数的乘法算法","authors":"Jean-Luc Beuchat, J. Muller","doi":"10.1109/ASAP.2005.45","DOIUrl":null,"url":null,"abstract":"The RN-codings, where \"RN\" stands for \"round to nearest\", are particular cases of signed digit representations, for which rounding to nearest is always identical to truncation. In radix 2, booth recoding is an RN-coding. In this paper, we suggest several multiplication algorithms able to handle RN-codings, and we analyze their properties.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"43 4 1","pages":"303-308"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiplication Algorithms for Radix-2 RN-Codings and Two's Complement Multiplication Algorithms for Radix-2 RN-Codings and Two's Complement\",\"authors\":\"Jean-Luc Beuchat, J. Muller\",\"doi\":\"10.1109/ASAP.2005.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The RN-codings, where \\\"RN\\\" stands for \\\"round to nearest\\\", are particular cases of signed digit representations, for which rounding to nearest is always identical to truncation. In radix 2, booth recoding is an RN-coding. In this paper, we suggest several multiplication algorithms able to handle RN-codings, and we analyze their properties.\",\"PeriodicalId\":6642,\"journal\":{\"name\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"volume\":\"43 4 1\",\"pages\":\"303-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2005.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2005.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

RN编码,其中“RN”代表“四舍五入”,是有符号数字表示的特殊情况,四舍五入总是与截断相同。在基数2中,展台编码是一种rn编码。在本文中,我们提出了几种能够处理rn编码的乘法算法,并分析了它们的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplication Algorithms for Radix-2 RN-Codings and Two's Complement Multiplication Algorithms for Radix-2 RN-Codings and Two's Complement
The RN-codings, where "RN" stands for "round to nearest", are particular cases of signed digit representations, for which rounding to nearest is always identical to truncation. In radix 2, booth recoding is an RN-coding. In this paper, we suggest several multiplication algorithms able to handle RN-codings, and we analyze their properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信