广义Riemann - Liouville算子的积分拉普拉斯变换反演

IF 0.5 Q3 MATHEMATICS
I. I. Bavrin, O. Yaremko
{"title":"广义Riemann - Liouville算子的积分拉普拉斯变换反演","authors":"I. I. Bavrin, O. Yaremko","doi":"10.13108/2016-8-3-41","DOIUrl":null,"url":null,"abstract":"We employ the integral Laplace transform to invert the generalized RiemannLiouville operator in a closed form. We establish that the inverse generalized RiemannLiouville operator is a differential or integral-differential operator. We establish a relation between Riemann-Liouville operator and Temlyakov-Bavrin operator. We provide new examples of generalized Riemann-Liouville operator.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"19 1","pages":"41-48"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverting of generalized Riemann - Liouville operator by means of integral Laplace transform\",\"authors\":\"I. I. Bavrin, O. Yaremko\",\"doi\":\"10.13108/2016-8-3-41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employ the integral Laplace transform to invert the generalized RiemannLiouville operator in a closed form. We establish that the inverse generalized RiemannLiouville operator is a differential or integral-differential operator. We establish a relation between Riemann-Liouville operator and Temlyakov-Bavrin operator. We provide new examples of generalized Riemann-Liouville operator.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"19 1\",\"pages\":\"41-48\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2016-8-3-41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2016-8-3-41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用积分拉普拉斯变换对广义黎曼-刘维尔算子进行封闭逆变换。证明了逆广义riemann - liouville算子是微分算子或积分微分算子。我们建立了Riemann-Liouville算子和Temlyakov-Bavrin算子之间的关系。给出了广义Riemann-Liouville算子的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverting of generalized Riemann - Liouville operator by means of integral Laplace transform
We employ the integral Laplace transform to invert the generalized RiemannLiouville operator in a closed form. We establish that the inverse generalized RiemannLiouville operator is a differential or integral-differential operator. We establish a relation between Riemann-Liouville operator and Temlyakov-Bavrin operator. We provide new examples of generalized Riemann-Liouville operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信