基于扩展状态观测器的压电驱动纳米定位器鲁棒自适应控制

Pengfei Xia, Wei Wei, Zaiwen Liu, Min Zuo
{"title":"基于扩展状态观测器的压电驱动纳米定位器鲁棒自适应控制","authors":"Pengfei Xia, Wei Wei, Zaiwen Liu, Min Zuo","doi":"10.1109/DDCLS.2019.8908943","DOIUrl":null,"url":null,"abstract":"Positioning control of a nano-positioner driven by a piezoelectric actuator is discussed. Robust adaptive control with extended state observer is presented for the trajectory tracking control. Radial basis function neural network (RBFNN) is utilized to estimate the unknown nonlinearities. Extended state observer (ESO) is also taken to observe the total disturbance, which includes external disturbances and hysteresis. Both the RBFNN and the ESO are utilized to reduce the dependence on model information. A nano-positioner model is established. Simulations confirm the robust adaptive control with ESO is effective in improving positioning accuracy.","PeriodicalId":6699,"journal":{"name":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"64 1","pages":"1003-1007"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Adaptive Control with Extended State Observer for a Piezo-actuated Nano-positioner\",\"authors\":\"Pengfei Xia, Wei Wei, Zaiwen Liu, Min Zuo\",\"doi\":\"10.1109/DDCLS.2019.8908943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positioning control of a nano-positioner driven by a piezoelectric actuator is discussed. Robust adaptive control with extended state observer is presented for the trajectory tracking control. Radial basis function neural network (RBFNN) is utilized to estimate the unknown nonlinearities. Extended state observer (ESO) is also taken to observe the total disturbance, which includes external disturbances and hysteresis. Both the RBFNN and the ESO are utilized to reduce the dependence on model information. A nano-positioner model is established. Simulations confirm the robust adaptive control with ESO is effective in improving positioning accuracy.\",\"PeriodicalId\":6699,\"journal\":{\"name\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"64 1\",\"pages\":\"1003-1007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2019.8908943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2019.8908943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了压电作动器驱动的纳米定位器的定位控制。针对轨迹跟踪控制,提出了扩展状态观测器的鲁棒自适应控制。利用径向基函数神经网络(RBFNN)对未知非线性进行估计。采用扩展状态观测器(ESO)来观察包括外部扰动和滞后在内的总扰动。同时利用RBFNN和ESO来减少对模型信息的依赖。建立了纳米定位器模型。仿真结果表明,基于ESO的鲁棒自适应控制能够有效地提高定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Adaptive Control with Extended State Observer for a Piezo-actuated Nano-positioner
Positioning control of a nano-positioner driven by a piezoelectric actuator is discussed. Robust adaptive control with extended state observer is presented for the trajectory tracking control. Radial basis function neural network (RBFNN) is utilized to estimate the unknown nonlinearities. Extended state observer (ESO) is also taken to observe the total disturbance, which includes external disturbances and hysteresis. Both the RBFNN and the ESO are utilized to reduce the dependence on model information. A nano-positioner model is established. Simulations confirm the robust adaptive control with ESO is effective in improving positioning accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信