关于与高斯变分问题有关的一个能力问题

M. Yamasaki
{"title":"关于与高斯变分问题有关的一个能力问题","authors":"M. Yamasaki","doi":"10.32917/hmj/1206139111","DOIUrl":null,"url":null,"abstract":"In a locally compact Hausdorff space, there are many ways to consider a set function for compact sets which is similar to the capacity in the classical sense. Starting from such a set function, we can define an inner quantity and an outer quantity. The problem of capacitability is to discuss when they coincide. A very useful tool is the general theory of capacitability which was estabilished by G. Choquet [2Γ\\. In this paper we shall examine the capacitability problem in relation to the Gauss variational problem. More precisely, let Ω be a locally compact Hausdorff space and Φ(χ, γ) be a lower semicontinuous function on ΩxΩ. Throughout this paper, we shall assume that Φ takes values in Q0, + oo], A measure μ will be always a non-negative Radon measure and Sμ the support of μ. The potential of μ is defined by","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"20 1","pages":"227-244"},"PeriodicalIF":0.0000,"publicationDate":"1966-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a capacitability problem raised in connection with the Gauss variational problem\",\"authors\":\"M. Yamasaki\",\"doi\":\"10.32917/hmj/1206139111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a locally compact Hausdorff space, there are many ways to consider a set function for compact sets which is similar to the capacity in the classical sense. Starting from such a set function, we can define an inner quantity and an outer quantity. The problem of capacitability is to discuss when they coincide. A very useful tool is the general theory of capacitability which was estabilished by G. Choquet [2Γ\\\\. In this paper we shall examine the capacitability problem in relation to the Gauss variational problem. More precisely, let Ω be a locally compact Hausdorff space and Φ(χ, γ) be a lower semicontinuous function on ΩxΩ. Throughout this paper, we shall assume that Φ takes values in Q0, + oo], A measure μ will be always a non-negative Radon measure and Sμ the support of μ. The potential of μ is defined by\",\"PeriodicalId\":17080,\"journal\":{\"name\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"volume\":\"20 1\",\"pages\":\"227-244\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1966-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32917/hmj/1206139111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/hmj/1206139111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在局部紧化Hausdorff空间中,考虑紧化集合的集合函数的方法有很多,类似于经典意义上的容量。从这样一个集合函数出发,我们可以定义一个内量和一个外量。能力的问题是在它们重合的时候讨论。一个非常有用的工具是由G. Choquet [2Γ\]建立的一般能力理论。在本文中,我们将研究与高斯变分问题有关的能力问题。更精确地说,设Ω是一个局部紧化的Hausdorff空间,Φ(χ, γ)是ΩxΩ上的下半连续函数。在本文中,我们假设Φ取值为Q0, + 0], A测度μ总是非负的Radon测度,而Sμ是μ的支持。μ的势定义为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a capacitability problem raised in connection with the Gauss variational problem
In a locally compact Hausdorff space, there are many ways to consider a set function for compact sets which is similar to the capacity in the classical sense. Starting from such a set function, we can define an inner quantity and an outer quantity. The problem of capacitability is to discuss when they coincide. A very useful tool is the general theory of capacitability which was estabilished by G. Choquet [2Γ\. In this paper we shall examine the capacitability problem in relation to the Gauss variational problem. More precisely, let Ω be a locally compact Hausdorff space and Φ(χ, γ) be a lower semicontinuous function on ΩxΩ. Throughout this paper, we shall assume that Φ takes values in Q0, + oo], A measure μ will be always a non-negative Radon measure and Sμ the support of μ. The potential of μ is defined by
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信