{"title":"保护私隐外判证书验证","authors":"Tarek Galal, Anja Lehmann","doi":"10.56553/popets-2023-0113","DOIUrl":null,"url":null,"abstract":"Digital Covid certificates are the first widely deployed end-user cryptographic certificates. For service providers, such as airlines or event ticket vendors, that needed to check that their (global) customers satisfy certain health policies, the verification of such Covid certificates was challenging though - not because of the cryptography involved, but due to the multitude of issuers, different certificate types and the evolving nature of country-specific policies that had to be supported. As Covid certificates contain sensitive health information, their (online) presentation to non-health related entities also poses clear privacy risk. To address both challenges, the EU proposed a specification for outsourcing the verification process to a validator service, that executes the process and informs service providers of the result. The WHO announced to adapt this approach for general vaccination credentials beyond Covid-19. While being beneficial to improve security and privacy for service providers, their solution requires strong trust assumption for the (central) validation service that learns all health-related details of the users.\n \n In our work, we propose and formally model a privacy-preserving variant of such an outsourced validation service. Therein the validator learns the attributes it is supposed to verify, but not the users identity. Still, the validator’s assertion is blindly bound to the user’s identity to ensure the desired user-binding. We analyze the EU specification in our model and show that it only meets a subset of those goals. Our analysis further shows that the EU protocol is unnecessarily complex and can be significantly simplified while maintaining the same (weak) level of security. Finally, we propose a new construction for privacy-preserving certificate validation that provably satisfies all desired goals.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"35 1","pages":"1232"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-Preserving Outsourced Certificate Validation\",\"authors\":\"Tarek Galal, Anja Lehmann\",\"doi\":\"10.56553/popets-2023-0113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital Covid certificates are the first widely deployed end-user cryptographic certificates. For service providers, such as airlines or event ticket vendors, that needed to check that their (global) customers satisfy certain health policies, the verification of such Covid certificates was challenging though - not because of the cryptography involved, but due to the multitude of issuers, different certificate types and the evolving nature of country-specific policies that had to be supported. As Covid certificates contain sensitive health information, their (online) presentation to non-health related entities also poses clear privacy risk. To address both challenges, the EU proposed a specification for outsourcing the verification process to a validator service, that executes the process and informs service providers of the result. The WHO announced to adapt this approach for general vaccination credentials beyond Covid-19. While being beneficial to improve security and privacy for service providers, their solution requires strong trust assumption for the (central) validation service that learns all health-related details of the users.\\n \\n In our work, we propose and formally model a privacy-preserving variant of such an outsourced validation service. Therein the validator learns the attributes it is supposed to verify, but not the users identity. Still, the validator’s assertion is blindly bound to the user’s identity to ensure the desired user-binding. We analyze the EU specification in our model and show that it only meets a subset of those goals. Our analysis further shows that the EU protocol is unnecessarily complex and can be significantly simplified while maintaining the same (weak) level of security. Finally, we propose a new construction for privacy-preserving certificate validation that provably satisfies all desired goals.\",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"35 1\",\"pages\":\"1232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56553/popets-2023-0113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56553/popets-2023-0113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digital Covid certificates are the first widely deployed end-user cryptographic certificates. For service providers, such as airlines or event ticket vendors, that needed to check that their (global) customers satisfy certain health policies, the verification of such Covid certificates was challenging though - not because of the cryptography involved, but due to the multitude of issuers, different certificate types and the evolving nature of country-specific policies that had to be supported. As Covid certificates contain sensitive health information, their (online) presentation to non-health related entities also poses clear privacy risk. To address both challenges, the EU proposed a specification for outsourcing the verification process to a validator service, that executes the process and informs service providers of the result. The WHO announced to adapt this approach for general vaccination credentials beyond Covid-19. While being beneficial to improve security and privacy for service providers, their solution requires strong trust assumption for the (central) validation service that learns all health-related details of the users.
In our work, we propose and formally model a privacy-preserving variant of such an outsourced validation service. Therein the validator learns the attributes it is supposed to verify, but not the users identity. Still, the validator’s assertion is blindly bound to the user’s identity to ensure the desired user-binding. We analyze the EU specification in our model and show that it only meets a subset of those goals. Our analysis further shows that the EU protocol is unnecessarily complex and can be significantly simplified while maintaining the same (weak) level of security. Finally, we propose a new construction for privacy-preserving certificate validation that provably satisfies all desired goals.