Riesz型尺度偏差算子和变维空间

IF 0.9 Q3 MATHEMATICS, APPLIED
Vladimir Kobelev
{"title":"Riesz型尺度偏差算子和变维空间","authors":"Vladimir Kobelev","doi":"10.1002/cmm4.1174","DOIUrl":null,"url":null,"abstract":"<p>The article introduces the scale-deviating operator. The scale-deviating differential operator comprises the parameters to designate the operator order and the parameters to define the dimension of space. The operator order depends on the characteristic length <i>κ</i>. There are two types of linear scale-deviating operators. For the distances <i>r</i>, which are much less than <i>κ</i>, the scale-deviating operator of the first type <math>\n <mrow>\n <mi>A</mi>\n </mrow></math> reduces to the common operators. For the distances, which exceed the length <i>κ</i>, this operator reduces to the fractional Riesz operator. The second type of the scale-deviating operator <math>\n <mrow>\n <mi>B</mi>\n </mrow></math> behaves oppositely. For the distances <i>r</i>, which are much higher than <i>κ</i>, the scale-deviating operator of the second type reduces to the common operators. Finally, for the distances, which below the length <i>κ</i>, this operator lessens to the fractional Riesz operator. These linear, isotropic operators possess the order, less than two. The solutions of new scale-deviating equations and the shell theorem for these operators are provided closed form.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1174","citationCount":"0","resultStr":"{\"title\":\"Scale-deviating operators of Riesz type and the spaces of variable dimensions\",\"authors\":\"Vladimir Kobelev\",\"doi\":\"10.1002/cmm4.1174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article introduces the scale-deviating operator. The scale-deviating differential operator comprises the parameters to designate the operator order and the parameters to define the dimension of space. The operator order depends on the characteristic length <i>κ</i>. There are two types of linear scale-deviating operators. For the distances <i>r</i>, which are much less than <i>κ</i>, the scale-deviating operator of the first type <math>\\n <mrow>\\n <mi>A</mi>\\n </mrow></math> reduces to the common operators. For the distances, which exceed the length <i>κ</i>, this operator reduces to the fractional Riesz operator. The second type of the scale-deviating operator <math>\\n <mrow>\\n <mi>B</mi>\\n </mrow></math> behaves oppositely. For the distances <i>r</i>, which are much higher than <i>κ</i>, the scale-deviating operator of the second type reduces to the common operators. Finally, for the distances, which below the length <i>κ</i>, this operator lessens to the fractional Riesz operator. These linear, isotropic operators possess the order, less than two. The solutions of new scale-deviating equations and the shell theorem for these operators are provided closed form.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1174\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了尺度偏差算子。偏离尺度微分算子包括指定算子阶数的参数和定义空间维数的参数。算子的顺序取决于特征长度κ。线性尺度偏离算子有两种类型。对于远小于κ的距离r,第一类A的尺度偏差算子简化为普通算子。对于长度超过κ的距离,该算子简化为分数Riesz算子。第二种类型的尺度偏离算子B的行为与之相反。对于远高于κ的距离r,第二类尺度偏差算子简化为普通算子。最后,对于长度小于κ的距离,该算子减小为分数Riesz算子。这些线性的,各向同性的算子的阶数小于2。给出了新的尺度偏离方程的解和这些算子的壳定理的封闭形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Scale-deviating operators of Riesz type and the spaces of variable dimensions

Scale-deviating operators of Riesz type and the spaces of variable dimensions

The article introduces the scale-deviating operator. The scale-deviating differential operator comprises the parameters to designate the operator order and the parameters to define the dimension of space. The operator order depends on the characteristic length κ. There are two types of linear scale-deviating operators. For the distances r, which are much less than κ, the scale-deviating operator of the first type A reduces to the common operators. For the distances, which exceed the length κ, this operator reduces to the fractional Riesz operator. The second type of the scale-deviating operator B behaves oppositely. For the distances r, which are much higher than κ, the scale-deviating operator of the second type reduces to the common operators. Finally, for the distances, which below the length κ, this operator lessens to the fractional Riesz operator. These linear, isotropic operators possess the order, less than two. The solutions of new scale-deviating equations and the shell theorem for these operators are provided closed form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信