如何对GAN事件进行加权

Mathias Backes, A. Butter, T. Plehn, R. Winterhalder
{"title":"如何对GAN事件进行加权","authors":"Mathias Backes, A. Butter, T. Plehn, R. Winterhalder","doi":"10.21468/SCIPOSTPHYS.10.4.089","DOIUrl":null,"url":null,"abstract":"Event generation with neural networks has seen significant progress recently. The big open question is still how such new methods will accelerate LHC simulations to the level required by upcoming LHC runs. We target a known bottleneck of standard simulations and show how their unweighting procedure can be improved by generative networks. This can, potentially, lead to a very significant gain in simulation speed.","PeriodicalId":8457,"journal":{"name":"arXiv: High Energy Physics - Phenomenology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"How to GAN Event Unweighting\",\"authors\":\"Mathias Backes, A. Butter, T. Plehn, R. Winterhalder\",\"doi\":\"10.21468/SCIPOSTPHYS.10.4.089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event generation with neural networks has seen significant progress recently. The big open question is still how such new methods will accelerate LHC simulations to the level required by upcoming LHC runs. We target a known bottleneck of standard simulations and show how their unweighting procedure can be improved by generative networks. This can, potentially, lead to a very significant gain in simulation speed.\",\"PeriodicalId\":8457,\"journal\":{\"name\":\"arXiv: High Energy Physics - Phenomenology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Phenomenology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/SCIPOSTPHYS.10.4.089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Phenomenology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.10.4.089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

近年来,神经网络在事件生成方面取得了重大进展。最大的问题仍然是这些新方法如何将LHC模拟加速到即将到来的LHC运行所需的水平。我们的目标是标准模拟的已知瓶颈,并展示了如何通过生成网络改进其不加权过程。这可能会导致模拟速度的显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to GAN Event Unweighting
Event generation with neural networks has seen significant progress recently. The big open question is still how such new methods will accelerate LHC simulations to the level required by upcoming LHC runs. We target a known bottleneck of standard simulations and show how their unweighting procedure can be improved by generative networks. This can, potentially, lead to a very significant gain in simulation speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信