双孔隙度的一般模型

Alain Bourgeat , Maria Goncharenko , Michel Panfilov , Leonid Pankratov
{"title":"双孔隙度的一般模型","authors":"Alain Bourgeat ,&nbsp;Maria Goncharenko ,&nbsp;Michel Panfilov ,&nbsp;Leonid Pankratov","doi":"10.1016/S1287-4620(00)88648-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a parabolic equation with highly contrasted diffusion coefficients in the blocks set ℳ<sup>(ɛ)</sup> and in the surrounding fissures system ℱ<sup>(ɛ)</sup>. Without a assumption, for a large range of contrast and by mean of variational homogenization, we find the global behavior when the numbers of blocks tends to infinity, for both the non stationary and the stationary model.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"327 12","pages":"Pages 1245-1250"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)88648-2","citationCount":"3","resultStr":"{\"title\":\"Un modèle général de double porosité\",\"authors\":\"Alain Bourgeat ,&nbsp;Maria Goncharenko ,&nbsp;Michel Panfilov ,&nbsp;Leonid Pankratov\",\"doi\":\"10.1016/S1287-4620(00)88648-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a parabolic equation with highly contrasted diffusion coefficients in the blocks set ℳ<sup>(ɛ)</sup> and in the surrounding fissures system ℱ<sup>(ɛ)</sup>. Without a assumption, for a large range of contrast and by mean of variational homogenization, we find the global behavior when the numbers of blocks tends to infinity, for both the non stationary and the stationary model.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"327 12\",\"pages\":\"Pages 1245-1250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)88648-2\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000886482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000886482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑一个抛物方程,该方程在块体集[]和周围裂隙系统[[]中具有高度对比的扩散系数。在没有假设的情况下,通过变分均匀化,我们发现了非平稳模型和平稳模型在块数趋于无穷大时的全局行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Un modèle général de double porosité

We consider a parabolic equation with highly contrasted diffusion coefficients in the blocks set ℳ(ɛ) and in the surrounding fissures system ℱ(ɛ). Without a assumption, for a large range of contrast and by mean of variational homogenization, we find the global behavior when the numbers of blocks tends to infinity, for both the non stationary and the stationary model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信