有限群环上矩阵离散对数问题的量子算法

IF 0.1 Q4 MATHEMATICS
A. Myasnikov, A. Ushakov
{"title":"有限群环上矩阵离散对数问题的量子算法","authors":"A. Myasnikov, A. Ushakov","doi":"10.1515/gcc-2014-0003","DOIUrl":null,"url":null,"abstract":"Abstract. We propose a polynomial time quantum algorithm for solving the discrete logarithm problem (DLP) in matrices over finite group rings. The hardness of this problem was recently employed in the design of a key-exchange protocol proposed by D. Kahrobaei, C. Koupparis and V. Shpilrain [Groups Complex. Cryptol. 5 (2013), 97–115]. Our result implies that the Kahrobaei–Koupparis–Shpilrain protocol does not belong to the realm of post-quantum cryptography.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1 1","pages":"31 - 36"},"PeriodicalIF":0.1000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Quantum algorithm for discrete logarithm problem for matrices over finite group rings\",\"authors\":\"A. Myasnikov, A. Ushakov\",\"doi\":\"10.1515/gcc-2014-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We propose a polynomial time quantum algorithm for solving the discrete logarithm problem (DLP) in matrices over finite group rings. The hardness of this problem was recently employed in the design of a key-exchange protocol proposed by D. Kahrobaei, C. Koupparis and V. Shpilrain [Groups Complex. Cryptol. 5 (2013), 97–115]. Our result implies that the Kahrobaei–Koupparis–Shpilrain protocol does not belong to the realm of post-quantum cryptography.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"1 1\",\"pages\":\"31 - 36\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2014-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2014-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

摘要

摘要提出了一种求解有限群环上矩阵离散对数问题的多项式时间量子算法。这个问题的难度最近被用于D. Kahrobaei, C. Koupparis和V. Shpilrain [Groups Complex]提出的密钥交换协议的设计中。密码学,5(2013),97-115。我们的结果表明Kahrobaei-Koupparis-Shpilrain协议不属于后量子密码学领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum algorithm for discrete logarithm problem for matrices over finite group rings
Abstract. We propose a polynomial time quantum algorithm for solving the discrete logarithm problem (DLP) in matrices over finite group rings. The hardness of this problem was recently employed in the design of a key-exchange protocol proposed by D. Kahrobaei, C. Koupparis and V. Shpilrain [Groups Complex. Cryptol. 5 (2013), 97–115]. Our result implies that the Kahrobaei–Koupparis–Shpilrain protocol does not belong to the realm of post-quantum cryptography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信