Gröbner基及其在多项式方程组求解和图着色中的应用

IF 0.3 Q4 MATHEMATICS
Haridas kumar Das, Nasim Reza
{"title":"Gröbner基及其在多项式方程组求解和图着色中的应用","authors":"Haridas kumar Das, Nasim Reza","doi":"10.3844/JMSSP.2018.175.182","DOIUrl":null,"url":null,"abstract":"This paper is based on the analytic and computational solution procedures of Grobner basis and its applications. We show the behavior of the ideals generated by polynomials from a polynomial ring. We also present the idea of a zero dimensional ideal and use of this ideal to solve system of polynomial equations. We then introduce an algorithmic procedure for solving a system of polynomial equations (linear and nonlinear) with a finite number of solutions extending the idea of Grobner basis. Finally we explore the idea of Grobner basis for coloring the vertices of a given graph. We illustrate the stated results through a number of examples. Moreover, as for auxilary and making comparison with the analytic results, we use Mathematica 9.0.1 to develop some computer algebra.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"92 1","pages":"175-182"},"PeriodicalIF":0.3000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Gröbner Bases and Their Uses in Solving System of Polynomial Equations and Graph Coloring\",\"authors\":\"Haridas kumar Das, Nasim Reza\",\"doi\":\"10.3844/JMSSP.2018.175.182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is based on the analytic and computational solution procedures of Grobner basis and its applications. We show the behavior of the ideals generated by polynomials from a polynomial ring. We also present the idea of a zero dimensional ideal and use of this ideal to solve system of polynomial equations. We then introduce an algorithmic procedure for solving a system of polynomial equations (linear and nonlinear) with a finite number of solutions extending the idea of Grobner basis. Finally we explore the idea of Grobner basis for coloring the vertices of a given graph. We illustrate the stated results through a number of examples. Moreover, as for auxilary and making comparison with the analytic results, we use Mathematica 9.0.1 to develop some computer algebra.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"92 1\",\"pages\":\"175-182\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/JMSSP.2018.175.182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2018.175.182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文以Grobner基的解析解和计算解程序及其应用为基础。我们给出了多项式环上多项式所产生的理想的行为。我们还提出了零维理想的概念,并利用这种理想来求解多项式方程组。然后,我们介绍了求解具有有限个数解的多项式方程组(线性和非线性)的算法过程,扩展了Grobner基的思想。最后,我们探讨了格罗布纳基在给定图顶点上色的思想。我们通过一些例子来说明上述结果。此外,为了辅助分析结果并与分析结果进行比较,我们使用Mathematica 9.0.1开发了一些计算机代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Gröbner Bases and Their Uses in Solving System of Polynomial Equations and Graph Coloring
This paper is based on the analytic and computational solution procedures of Grobner basis and its applications. We show the behavior of the ideals generated by polynomials from a polynomial ring. We also present the idea of a zero dimensional ideal and use of this ideal to solve system of polynomial equations. We then introduce an algorithmic procedure for solving a system of polynomial equations (linear and nonlinear) with a finite number of solutions extending the idea of Grobner basis. Finally we explore the idea of Grobner basis for coloring the vertices of a given graph. We illustrate the stated results through a number of examples. Moreover, as for auxilary and making comparison with the analytic results, we use Mathematica 9.0.1 to develop some computer algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信