水动力作用在沿圆周运动的水下球体上的力

G. Wu, R. E. Taylor
{"title":"水动力作用在沿圆周运动的水下球体上的力","authors":"G. Wu, R. E. Taylor","doi":"10.1098/rspa.1990.0031","DOIUrl":null,"url":null,"abstract":"Analytical solutions for various hydrodynamic problems are briefly reviewed. The case of a submerged sphere moving in a circular path at constant angular velocity is then analysed based on the linearized velocity potential theory. The potential is expressed by means of a Green function and a distribution of sources over the body surface, written in terms of Legendre functions. The coefficients in the series of the Legendre functions are obtained by imposing the body surface condition. Figures are provided showing the hydrodynamic forces on the sphere.","PeriodicalId":20605,"journal":{"name":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","volume":"18 1","pages":"215 - 227"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"The hydrodynamic forces on a submerged sphere moving in a circular path\",\"authors\":\"G. Wu, R. E. Taylor\",\"doi\":\"10.1098/rspa.1990.0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analytical solutions for various hydrodynamic problems are briefly reviewed. The case of a submerged sphere moving in a circular path at constant angular velocity is then analysed based on the linearized velocity potential theory. The potential is expressed by means of a Green function and a distribution of sources over the body surface, written in terms of Legendre functions. The coefficients in the series of the Legendre functions are obtained by imposing the body surface condition. Figures are provided showing the hydrodynamic forces on the sphere.\",\"PeriodicalId\":20605,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences\",\"volume\":\"18 1\",\"pages\":\"215 - 227\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.1990.0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.1990.0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

简要回顾了各种水动力问题的解析解。基于线性化速度势理论,分析了水下球以等角速度沿圆周运动的情况。势是用格林函数和物体表面上的源分布来表示的,用勒让德函数来表示。通过施加体表条件,得到了勒让德函数级数中的系数。图中显示了作用在球体上的水动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The hydrodynamic forces on a submerged sphere moving in a circular path
Analytical solutions for various hydrodynamic problems are briefly reviewed. The case of a submerged sphere moving in a circular path at constant angular velocity is then analysed based on the linearized velocity potential theory. The potential is expressed by means of a Green function and a distribution of sources over the body surface, written in terms of Legendre functions. The coefficients in the series of the Legendre functions are obtained by imposing the body surface condition. Figures are provided showing the hydrodynamic forces on the sphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信