新颖的可重构多项式矩阵/矢量乘法的硬件实现

Server Kasap, Soydan Redif
{"title":"新颖的可重构多项式矩阵/矢量乘法的硬件实现","authors":"Server Kasap, Soydan Redif","doi":"10.1109/FPT.2014.7082785","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel reconfigurable hardware architecture for computing the polynomial matrix multiplication (PMM) of polynomial matrices/vectors. The proposed algorithm exploits an extension of the fast convolution technique to multiple-input, multiple-output (MIMO) systems. The proposed architecture is the first one devoted to the hardware implementation of PMM. Hardware implementation of the algorithm is achieved via a highly pipelined, partly systolic FPGA architecture. We verify the algorithmic accuracy of the architecture, which is scalable in terms of the order of the input matrices, through FPGA-in-the-loop hardware co-simulations. Results are presented to demonstrate the accuracy and capability of the architecture.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"18 1","pages":"243-247"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel reconfigurable hardware implementation of polynomial matrix/vector multiplications\",\"authors\":\"Server Kasap, Soydan Redif\",\"doi\":\"10.1109/FPT.2014.7082785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel reconfigurable hardware architecture for computing the polynomial matrix multiplication (PMM) of polynomial matrices/vectors. The proposed algorithm exploits an extension of the fast convolution technique to multiple-input, multiple-output (MIMO) systems. The proposed architecture is the first one devoted to the hardware implementation of PMM. Hardware implementation of the algorithm is achieved via a highly pipelined, partly systolic FPGA architecture. We verify the algorithmic accuracy of the architecture, which is scalable in terms of the order of the input matrices, through FPGA-in-the-loop hardware co-simulations. Results are presented to demonstrate the accuracy and capability of the architecture.\",\"PeriodicalId\":6877,\"journal\":{\"name\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"18 1\",\"pages\":\"243-247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2014.7082785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的可重构硬件结构,用于计算多项式矩阵/向量的多项式矩阵乘法。该算法将快速卷积技术扩展到多输入多输出(MIMO)系统。所提出的体系结构是第一个致力于PMM硬件实现的体系结构。该算法的硬件实现是通过高度流水线,部分收缩FPGA架构实现的。我们通过fpga在环硬件联合仿真验证了该架构的算法准确性,该架构可根据输入矩阵的顺序进行扩展。结果表明了该体系结构的准确性和能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel reconfigurable hardware implementation of polynomial matrix/vector multiplications
In this paper, we introduce a novel reconfigurable hardware architecture for computing the polynomial matrix multiplication (PMM) of polynomial matrices/vectors. The proposed algorithm exploits an extension of the fast convolution technique to multiple-input, multiple-output (MIMO) systems. The proposed architecture is the first one devoted to the hardware implementation of PMM. Hardware implementation of the algorithm is achieved via a highly pipelined, partly systolic FPGA architecture. We verify the algorithmic accuracy of the architecture, which is scalable in terms of the order of the input matrices, through FPGA-in-the-loop hardware co-simulations. Results are presented to demonstrate the accuracy and capability of the architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信