基于ssvep的外骨骼BCI神经自适应积分滑模控制器

A. Jebri, T. Madani, Karim D Djouani
{"title":"基于ssvep的外骨骼BCI神经自适应积分滑模控制器","authors":"A. Jebri, T. Madani, Karim D Djouani","doi":"10.1109/ICAR46387.2019.8981615","DOIUrl":null,"url":null,"abstract":"This paper introduces a robust neural adaptive integral sliding mode controller with a SSVEP-based BCI for exoskeletons. A BCI is used to establish the desired trajectories by analyzing EEG signals. The neural networks are used to approximate nonlinear exoskeleton's dynamic. A sliding mode controller is added to guarantee the global asymptotic stability of the tracking trajectory and the neural network approximations. The controller's design is based on the hypothesis that only classical properties like boundedness of some parameters are known and all other functions are unknown. The closed-loop stability of the system is demonstrated using Lyapunov method. The effectiveness of the proposed approach is tested by an experiment application to rehabilitation context using an upper limb exoskeleton of 2-DOF.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"7 1","pages":"87-92"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neural Adaptive Integral-Sliding-Mode Controller with a SSVEP-based BCI for Exoskeletons\",\"authors\":\"A. Jebri, T. Madani, Karim D Djouani\",\"doi\":\"10.1109/ICAR46387.2019.8981615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a robust neural adaptive integral sliding mode controller with a SSVEP-based BCI for exoskeletons. A BCI is used to establish the desired trajectories by analyzing EEG signals. The neural networks are used to approximate nonlinear exoskeleton's dynamic. A sliding mode controller is added to guarantee the global asymptotic stability of the tracking trajectory and the neural network approximations. The controller's design is based on the hypothesis that only classical properties like boundedness of some parameters are known and all other functions are unknown. The closed-loop stability of the system is demonstrated using Lyapunov method. The effectiveness of the proposed approach is tested by an experiment application to rehabilitation context using an upper limb exoskeleton of 2-DOF.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"7 1\",\"pages\":\"87-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

介绍了一种基于ssvep的外骨骼鲁棒神经自适应积分滑模控制器。利用脑机接口(BCI)对脑电信号进行分析,建立所需的运动轨迹。利用神经网络对非线性外骨骼的动力学进行近似。为了保证跟踪轨迹和神经网络逼近的全局渐近稳定性,增加了滑模控制器。控制器的设计是基于这样的假设,即只有一些参数的有界性等经典性质是已知的,而所有其他函数都是未知的。利用李雅普诺夫方法证明了系统的闭环稳定性。采用2自由度上肢外骨骼进行康复实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Adaptive Integral-Sliding-Mode Controller with a SSVEP-based BCI for Exoskeletons
This paper introduces a robust neural adaptive integral sliding mode controller with a SSVEP-based BCI for exoskeletons. A BCI is used to establish the desired trajectories by analyzing EEG signals. The neural networks are used to approximate nonlinear exoskeleton's dynamic. A sliding mode controller is added to guarantee the global asymptotic stability of the tracking trajectory and the neural network approximations. The controller's design is based on the hypothesis that only classical properties like boundedness of some parameters are known and all other functions are unknown. The closed-loop stability of the system is demonstrated using Lyapunov method. The effectiveness of the proposed approach is tested by an experiment application to rehabilitation context using an upper limb exoskeleton of 2-DOF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信