S. Rabbi, Mohammad Azizur Rahman, M. Sarker, Stephen Butt
{"title":"电潜泵磁滞IPM电机驱动的建模与性能评价","authors":"S. Rabbi, Mohammad Azizur Rahman, M. Sarker, Stephen Butt","doi":"10.1109/ECCE.2015.7310239","DOIUrl":null,"url":null,"abstract":"This paper presents modeling and analysis of a hysteresis interior permanent magnet (IPM) motor drive for electric submersible pumps. A hysteresis IPM motor can self-start without the need of additional position sensors and complex control techniques. It does not have any slip power losses in the rotor at steady state which results in less heat dissipation and low electrical losses. When used in an electric submersible pump (ESP) for oil production, it has the ability to automatically adapt itself to the changes in well conditions. In this paper, a bond graph model of a hysteresis IPM motor ESP drive is used to predict the effect of rotor dynamics on the transient behavior of the submersible motor drive. Experimental investigations have been also carried out for a laboratory prototype 5HP hysteresis IPM motor drive. Due to increased efficiency and simplified controller requirements, the hysteresis IPM motor is proposed as a replacement for the standard induction motor currently used for downhole ESPs in offshore oil recovery plants.","PeriodicalId":6654,"journal":{"name":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"82 1","pages":"4105-4112"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modeling and performance evaluation of a hysteresis IPM motor drive for electric submersible pumps\",\"authors\":\"S. Rabbi, Mohammad Azizur Rahman, M. Sarker, Stephen Butt\",\"doi\":\"10.1109/ECCE.2015.7310239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents modeling and analysis of a hysteresis interior permanent magnet (IPM) motor drive for electric submersible pumps. A hysteresis IPM motor can self-start without the need of additional position sensors and complex control techniques. It does not have any slip power losses in the rotor at steady state which results in less heat dissipation and low electrical losses. When used in an electric submersible pump (ESP) for oil production, it has the ability to automatically adapt itself to the changes in well conditions. In this paper, a bond graph model of a hysteresis IPM motor ESP drive is used to predict the effect of rotor dynamics on the transient behavior of the submersible motor drive. Experimental investigations have been also carried out for a laboratory prototype 5HP hysteresis IPM motor drive. Due to increased efficiency and simplified controller requirements, the hysteresis IPM motor is proposed as a replacement for the standard induction motor currently used for downhole ESPs in offshore oil recovery plants.\",\"PeriodicalId\":6654,\"journal\":{\"name\":\"2015 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"82 1\",\"pages\":\"4105-4112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2015.7310239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2015.7310239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and performance evaluation of a hysteresis IPM motor drive for electric submersible pumps
This paper presents modeling and analysis of a hysteresis interior permanent magnet (IPM) motor drive for electric submersible pumps. A hysteresis IPM motor can self-start without the need of additional position sensors and complex control techniques. It does not have any slip power losses in the rotor at steady state which results in less heat dissipation and low electrical losses. When used in an electric submersible pump (ESP) for oil production, it has the ability to automatically adapt itself to the changes in well conditions. In this paper, a bond graph model of a hysteresis IPM motor ESP drive is used to predict the effect of rotor dynamics on the transient behavior of the submersible motor drive. Experimental investigations have been also carried out for a laboratory prototype 5HP hysteresis IPM motor drive. Due to increased efficiency and simplified controller requirements, the hysteresis IPM motor is proposed as a replacement for the standard induction motor currently used for downhole ESPs in offshore oil recovery plants.