循环图边合并的取向色数

D. E. Nurvazly, J. M. Manulang, K. Sugeng
{"title":"循环图边合并的取向色数","authors":"D. E. Nurvazly, J. M. Manulang, K. Sugeng","doi":"10.19184/IJC.2019.3.1.5","DOIUrl":null,"url":null,"abstract":"<p>An oriented <span class=\"math\"><em>k</em> − </span>coloring of an oriented graph <span class=\"math\"><em>G⃗</em></span> is a partition of <span class=\"math\"><em>V</em>(<em>G⃗</em>)</span> into <span class=\"math\"><em>k</em></span> color classes such that no two adjacent vertices belong to the same color class, and all the arcs linking the two color classes have the same direction. The oriented chromatic number of an oriented graph <span class=\"math\"><em>G⃗</em></span> is the minimum order of an oriented graph <span class=\"math\"><em>H⃗</em></span> to which <span class=\"math\"><em>G⃗</em></span> admits a homomorphism to <span class=\"math\"><em>H⃗</em></span>. The oriented chromatic number of an undirected graph <span class=\"math\"><em>G</em></span> is the maximum oriented chromatic number of all possible orientations of the graph <span class=\"math\"><em>G</em></span>. In this paper, we show that every edge amalgamation of cycle graphs, which also known as a book graph, has oriented chromatic number less than or equal to six.</p>","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The oriented chromatic number of edge-amalgamation of cycle graph\",\"authors\":\"D. E. Nurvazly, J. M. Manulang, K. Sugeng\",\"doi\":\"10.19184/IJC.2019.3.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An oriented <span class=\\\"math\\\"><em>k</em> − </span>coloring of an oriented graph <span class=\\\"math\\\"><em>G⃗</em></span> is a partition of <span class=\\\"math\\\"><em>V</em>(<em>G⃗</em>)</span> into <span class=\\\"math\\\"><em>k</em></span> color classes such that no two adjacent vertices belong to the same color class, and all the arcs linking the two color classes have the same direction. The oriented chromatic number of an oriented graph <span class=\\\"math\\\"><em>G⃗</em></span> is the minimum order of an oriented graph <span class=\\\"math\\\"><em>H⃗</em></span> to which <span class=\\\"math\\\"><em>G⃗</em></span> admits a homomorphism to <span class=\\\"math\\\"><em>H⃗</em></span>. The oriented chromatic number of an undirected graph <span class=\\\"math\\\"><em>G</em></span> is the maximum oriented chromatic number of all possible orientations of the graph <span class=\\\"math\\\"><em>G</em></span>. In this paper, we show that every edge amalgamation of cycle graphs, which also known as a book graph, has oriented chromatic number less than or equal to six.</p>\",\"PeriodicalId\":13506,\"journal\":{\"name\":\"Indonesian Journal of Combinatorics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/IJC.2019.3.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/IJC.2019.3.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有向图G -的有向k -着色是将V(G - l)划分为k个颜色类,使得没有两个相邻的顶点属于同一个颜色类,并且连接两个颜色类的所有弧线都具有相同的方向。有向图G′的有向色数是G′与H′同态的有向图H′的最小阶。无向图G的有向色数是图G所有可能有向的最大有向色数。本文证明了循环图(又称书图)的每条边合并都有小于等于6的有向色数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The oriented chromatic number of edge-amalgamation of cycle graph

An oriented kcoloring of an oriented graph G⃗ is a partition of V(G⃗) into k color classes such that no two adjacent vertices belong to the same color class, and all the arcs linking the two color classes have the same direction. The oriented chromatic number of an oriented graph G⃗ is the minimum order of an oriented graph H⃗ to which G⃗ admits a homomorphism to H⃗. The oriented chromatic number of an undirected graph G is the maximum oriented chromatic number of all possible orientations of the graph G. In this paper, we show that every edge amalgamation of cycle graphs, which also known as a book graph, has oriented chromatic number less than or equal to six.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信