主题演讲1:游戏中的共同进化学习

X. Yao
{"title":"主题演讲1:游戏中的共同进化学习","authors":"X. Yao","doi":"10.1109/CIG.2015.7317657","DOIUrl":null,"url":null,"abstract":"Co-evolution has been used widely in automatic learning of game-playing strategies, e.g., for iterated prisoner's dilemma games, backgammon, chess, etc. It is a very interesting form of learning because it learns by interactions only, without any explicit target output information. In other words, the correct choices or moves were not provided as teacher information in learning. Yet co-evolutionary learning is still able to learn high-performance, in comparison to average human performance, game-playing strategies. Interestingly, the research of co-evolutionary learning has not focused on its generalisation ability, in sharp contrast to machine learning in general, where generalisation is at the heart of learning of any form. This talk presents one of the few generic frameworks that are available for measuring generalisation of coevolutionary learning. It enables us to discuss and study generalisation of different co-evolutionary algorithms more objectively and quantitatively. As a result, it enables us to draw more appropriate conclusions about the abilities of our learned game-playing strategies in dealing with totally new and unseens environments (including opponents). The iterated prisoner's dilemma game will be used as an example in this talk to illustrate our theoretical framework and performance improvements we could gain by following this more principled approach to co-evolutionary learning.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"52 360 1","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keynote speech I: Co-evolutionary learning in game-playing\",\"authors\":\"X. Yao\",\"doi\":\"10.1109/CIG.2015.7317657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co-evolution has been used widely in automatic learning of game-playing strategies, e.g., for iterated prisoner's dilemma games, backgammon, chess, etc. It is a very interesting form of learning because it learns by interactions only, without any explicit target output information. In other words, the correct choices or moves were not provided as teacher information in learning. Yet co-evolutionary learning is still able to learn high-performance, in comparison to average human performance, game-playing strategies. Interestingly, the research of co-evolutionary learning has not focused on its generalisation ability, in sharp contrast to machine learning in general, where generalisation is at the heart of learning of any form. This talk presents one of the few generic frameworks that are available for measuring generalisation of coevolutionary learning. It enables us to discuss and study generalisation of different co-evolutionary algorithms more objectively and quantitatively. As a result, it enables us to draw more appropriate conclusions about the abilities of our learned game-playing strategies in dealing with totally new and unseens environments (including opponents). The iterated prisoner's dilemma game will be used as an example in this talk to illustrate our theoretical framework and performance improvements we could gain by following this more principled approach to co-evolutionary learning.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"52 360 1\",\"pages\":\"16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2015.7317657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2015.7317657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

协同进化已广泛应用于博弈策略的自动学习,如迭代囚徒困境博弈、西洋双陆棋、国际象棋等。这是一种非常有趣的学习形式,因为它只通过交互进行学习,没有任何明确的目标输出信息。换句话说,正确的选择或动作在学习中没有作为教师信息提供。然而,与人类的平均表现相比,共同进化学习仍然能够学习高性能,游戏策略。有趣的是,共同进化学习的研究并没有关注它的泛化能力,这与一般的机器学习形成鲜明对比,在机器学习中,泛化是任何形式学习的核心。本次演讲将介绍为数不多的可用于测量共同进化学习泛化的通用框架之一。它使我们能够更客观和定量地讨论和研究不同协同进化算法的泛化。因此,它使我们能够得出更恰当的结论,即我们在处理全新和不可见环境(包括对手)时所习得的游戏策略的能力。在这次演讲中,我们将以迭代囚徒困境游戏为例,说明我们的理论框架和性能改进,我们可以通过遵循这种更有原则的方法来进行共同进化学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keynote speech I: Co-evolutionary learning in game-playing
Co-evolution has been used widely in automatic learning of game-playing strategies, e.g., for iterated prisoner's dilemma games, backgammon, chess, etc. It is a very interesting form of learning because it learns by interactions only, without any explicit target output information. In other words, the correct choices or moves were not provided as teacher information in learning. Yet co-evolutionary learning is still able to learn high-performance, in comparison to average human performance, game-playing strategies. Interestingly, the research of co-evolutionary learning has not focused on its generalisation ability, in sharp contrast to machine learning in general, where generalisation is at the heart of learning of any form. This talk presents one of the few generic frameworks that are available for measuring generalisation of coevolutionary learning. It enables us to discuss and study generalisation of different co-evolutionary algorithms more objectively and quantitatively. As a result, it enables us to draw more appropriate conclusions about the abilities of our learned game-playing strategies in dealing with totally new and unseens environments (including opponents). The iterated prisoner's dilemma game will be used as an example in this talk to illustrate our theoretical framework and performance improvements we could gain by following this more principled approach to co-evolutionary learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信