{"title":"昼夜节律振荡中的非编码振动","authors":"U. Bhadra, Pradipta Patra, M. Pal‐Bhadra","doi":"10.4172/2379-1764.1000236","DOIUrl":null,"url":null,"abstract":"Neuron driven physiological activities such as sleep, feeding, energy consumption are controlled by light sensitive central clock genes in the pacemaker neurons in the brain. Multiple epigenetic events including post-transcriptional regulation, splicing, polyadenylation, mature mRNA editing and stability of translation products are the main vibrators for circadian oscillation with the instructive role of various sets of non-coding small regulatory RNA. Here, we sum up the basic role of small regulatory RNA and their epigenetic circuits in brain clock activity.","PeriodicalId":7277,"journal":{"name":"Advanced techniques in biology & medicine","volume":"22 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-coding Vibration in Circadian Oscillation\",\"authors\":\"U. Bhadra, Pradipta Patra, M. Pal‐Bhadra\",\"doi\":\"10.4172/2379-1764.1000236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuron driven physiological activities such as sleep, feeding, energy consumption are controlled by light sensitive central clock genes in the pacemaker neurons in the brain. Multiple epigenetic events including post-transcriptional regulation, splicing, polyadenylation, mature mRNA editing and stability of translation products are the main vibrators for circadian oscillation with the instructive role of various sets of non-coding small regulatory RNA. Here, we sum up the basic role of small regulatory RNA and their epigenetic circuits in brain clock activity.\",\"PeriodicalId\":7277,\"journal\":{\"name\":\"Advanced techniques in biology & medicine\",\"volume\":\"22 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced techniques in biology & medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2379-1764.1000236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced techniques in biology & medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2379-1764.1000236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neuron driven physiological activities such as sleep, feeding, energy consumption are controlled by light sensitive central clock genes in the pacemaker neurons in the brain. Multiple epigenetic events including post-transcriptional regulation, splicing, polyadenylation, mature mRNA editing and stability of translation products are the main vibrators for circadian oscillation with the instructive role of various sets of non-coding small regulatory RNA. Here, we sum up the basic role of small regulatory RNA and their epigenetic circuits in brain clock activity.