s ^6中的完全实曲面

IF 0.7 Q2 MATHEMATICS
Sharief Deshmukh
{"title":"s ^6中的完全实曲面","authors":"Sharief Deshmukh","doi":"10.5556/J.TKJM.23.1992.4522","DOIUrl":null,"url":null,"abstract":"\n \n \nThe normal bundle $\\bar \\nu$ of a totally real surface $M$ in $S^6$ splits as $\\bar\\nu= JTM\\oplus \\bar\\mu$ where $TM$ is the tangent bundle of $M$ and  $\\bar\\mu$ is sub­bundle of $\\bar\\nu$ which is invariant under the almost complex structure $J$. We study the totally real surfaces M of constant Gaussian curvature K for which the second fundamental form $h(x, y) \\in JTM$, and we show that $K = 1$ (that is, $M$ is totally geodesic). \n \n \n","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":"117 1 1","pages":"11-14"},"PeriodicalIF":0.7000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TOTALLY REAL SURFACES IN $S^6$\",\"authors\":\"Sharief Deshmukh\",\"doi\":\"10.5556/J.TKJM.23.1992.4522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\nThe normal bundle $\\\\bar \\\\nu$ of a totally real surface $M$ in $S^6$ splits as $\\\\bar\\\\nu= JTM\\\\oplus \\\\bar\\\\mu$ where $TM$ is the tangent bundle of $M$ and  $\\\\bar\\\\mu$ is sub­bundle of $\\\\bar\\\\nu$ which is invariant under the almost complex structure $J$. We study the totally real surfaces M of constant Gaussian curvature K for which the second fundamental form $h(x, y) \\\\in JTM$, and we show that $K = 1$ (that is, $M$ is totally geodesic). \\n \\n \\n\",\"PeriodicalId\":45776,\"journal\":{\"name\":\"Tamkang Journal of Mathematics\",\"volume\":\"117 1 1\",\"pages\":\"11-14\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tamkang Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5556/J.TKJM.23.1992.4522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/J.TKJM.23.1992.4522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在$S^6$中,$M$的正常束$\bar \nu$分裂为$\bar\nu= JTM\oplus \bar\mu$,其中$TM$是$M$的切线束,$\bar\mu$是$\bar\nu$的子束,$J$在几乎复杂的结构下是不变的。我们研究了具有恒定高斯曲率K的全实曲面M,其第二种基本形式为$h(x, y) \in JTM$,并且我们证明了$K = 1$(即$M$是完全测地线)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TOTALLY REAL SURFACES IN $S^6$
The normal bundle $\bar \nu$ of a totally real surface $M$ in $S^6$ splits as $\bar\nu= JTM\oplus \bar\mu$ where $TM$ is the tangent bundle of $M$ and  $\bar\mu$ is sub­bundle of $\bar\nu$ which is invariant under the almost complex structure $J$. We study the totally real surfaces M of constant Gaussian curvature K for which the second fundamental form $h(x, y) \in JTM$, and we show that $K = 1$ (that is, $M$ is totally geodesic).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信