时间相关干扰下波束形成器设计与在线实现:脑电脑活动重建

Takehiro Kono, M. Yukawa, Tomasz Piotrowski
{"title":"时间相关干扰下波束形成器设计与在线实现:脑电脑活动重建","authors":"Takehiro Kono, M. Yukawa, Tomasz Piotrowski","doi":"10.1109/ICASSP.2019.8682614","DOIUrl":null,"url":null,"abstract":"We present a convexly-constrained beamformer design for brain activity reconstruction from non-invasive electroencephalography (EEG) signals. An intrinsic gap between the output variance and the mean squared errors is highlighted that occurs due to the presence of interfering activities correlated with the desired activity. The key idea of the proposed beamformer is reducing this gap without amplifying the noise by imposing a quadratic constraint that bounds the total power of interference leakage together with the distortionless constraint. The proposed beamformer can be implemented efficiently by the multi-domain adaptive filtering algorithm. Numerical examples show the clear advantages of the proposed beamformer over the minimum-variance distortionless response (MVDR) and nulling beamformers.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"35 1","pages":"1070-1074"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Beamformer Design under Time-correlated Interference and Online Implementation: Brain-activity Reconstruction from EEG\",\"authors\":\"Takehiro Kono, M. Yukawa, Tomasz Piotrowski\",\"doi\":\"10.1109/ICASSP.2019.8682614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a convexly-constrained beamformer design for brain activity reconstruction from non-invasive electroencephalography (EEG) signals. An intrinsic gap between the output variance and the mean squared errors is highlighted that occurs due to the presence of interfering activities correlated with the desired activity. The key idea of the proposed beamformer is reducing this gap without amplifying the noise by imposing a quadratic constraint that bounds the total power of interference leakage together with the distortionless constraint. The proposed beamformer can be implemented efficiently by the multi-domain adaptive filtering algorithm. Numerical examples show the clear advantages of the proposed beamformer over the minimum-variance distortionless response (MVDR) and nulling beamformers.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"35 1\",\"pages\":\"1070-1074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种凸约束波束形成器设计,用于从非侵入性脑电图(EEG)信号中重建大脑活动。输出方差和均方误差之间的内在差距被强调,这是由于与期望活动相关的干扰活动的存在而发生的。提出的波束形成器的关键思想是通过施加二次约束来限制干扰泄漏的总功率和无失真约束,从而在不放大噪声的情况下减小这种间隙。该波束形成器可以通过多域自适应滤波算法有效地实现。数值算例表明,该波束形成器明显优于最小方差无失真响应(MVDR)波束形成器和零化波束形成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beamformer Design under Time-correlated Interference and Online Implementation: Brain-activity Reconstruction from EEG
We present a convexly-constrained beamformer design for brain activity reconstruction from non-invasive electroencephalography (EEG) signals. An intrinsic gap between the output variance and the mean squared errors is highlighted that occurs due to the presence of interfering activities correlated with the desired activity. The key idea of the proposed beamformer is reducing this gap without amplifying the noise by imposing a quadratic constraint that bounds the total power of interference leakage together with the distortionless constraint. The proposed beamformer can be implemented efficiently by the multi-domain adaptive filtering algorithm. Numerical examples show the clear advantages of the proposed beamformer over the minimum-variance distortionless response (MVDR) and nulling beamformers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信