完全流形上的立花型定理

G. Colombo, Marco Mariani, M. Rigoli
{"title":"完全流形上的立花型定理","authors":"G. Colombo, Marco Mariani, M. Rigoli","doi":"10.2422/2036-2145.202203_018","DOIUrl":null,"url":null,"abstract":"We prove that a compact Riemannian manifold of dimension m ≥ 3 with harmonic curvature and ⌊ 2 ⌋-positive curvature operator has constant sectional curvature, extending the classical Tachibana theorem for manifolds with positive curvature operator. The condition of ⌊ 2 ⌋-positivity originates from recent work of Petersen and Wink, who proved a similar Tachibana-type theorem under the stronger condition that the manifold be Einstein. We show that the same rigidity property holds for complete manifolds assuming either parabolicity, an integral bound on the Weyl tensor or a stronger pointwise positive lower bound on the average of the first ⌊ 2 ⌋ eigenvalues of the curvature operator. For 3-manifolds, we show that positivity of the curvature operator can be relaxed to positivity of the Ricci tensor. MSC 2020 Primary: 53B20, 53C20, 53C21; Secondary: 31C12.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tachibana-type theorems on complete manifolds\",\"authors\":\"G. Colombo, Marco Mariani, M. Rigoli\",\"doi\":\"10.2422/2036-2145.202203_018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a compact Riemannian manifold of dimension m ≥ 3 with harmonic curvature and ⌊ 2 ⌋-positive curvature operator has constant sectional curvature, extending the classical Tachibana theorem for manifolds with positive curvature operator. The condition of ⌊ 2 ⌋-positivity originates from recent work of Petersen and Wink, who proved a similar Tachibana-type theorem under the stronger condition that the manifold be Einstein. We show that the same rigidity property holds for complete manifolds assuming either parabolicity, an integral bound on the Weyl tensor or a stronger pointwise positive lower bound on the average of the first ⌊ 2 ⌋ eigenvalues of the curvature operator. For 3-manifolds, we show that positivity of the curvature operator can be relaxed to positivity of the Ricci tensor. MSC 2020 Primary: 53B20, 53C20, 53C21; Secondary: 31C12.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202203_018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202203_018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

证明了具有调和曲率和⌊2⌋正曲率算子的m≥3维紧黎曼流形具有常截面曲率,推广了经典的关于正曲率流形的立花定理。⌊2⌋正性的条件源于Petersen和Wink最近的工作,他们在更强的条件下证明了一个类似的立花定理,即流形是爱因斯坦。我们证明了相同的刚性性质适用于完全流形,假设抛物性、Weyl张量上的积分界或曲率算子的第一个特征值的均值上的更强的点向正下界。对于3流形,我们证明了曲率算子的正性可以松弛为里奇张量的正性。MSC 2020 Primary: 53B20, 53C20, 53C21;二级:31 c12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tachibana-type theorems on complete manifolds
We prove that a compact Riemannian manifold of dimension m ≥ 3 with harmonic curvature and ⌊ 2 ⌋-positive curvature operator has constant sectional curvature, extending the classical Tachibana theorem for manifolds with positive curvature operator. The condition of ⌊ 2 ⌋-positivity originates from recent work of Petersen and Wink, who proved a similar Tachibana-type theorem under the stronger condition that the manifold be Einstein. We show that the same rigidity property holds for complete manifolds assuming either parabolicity, an integral bound on the Weyl tensor or a stronger pointwise positive lower bound on the average of the first ⌊ 2 ⌋ eigenvalues of the curvature operator. For 3-manifolds, we show that positivity of the curvature operator can be relaxed to positivity of the Ricci tensor. MSC 2020 Primary: 53B20, 53C20, 53C21; Secondary: 31C12.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信