{"title":"镁铝Wt%对金属溶解法制备尖晶石MgAl2O4相形成的影响","authors":"Chairatul Umamah, S. Pratapa, H. Andi","doi":"10.18860/neu.v12i1.7816","DOIUrl":null,"url":null,"abstract":"Synthesis of magnesium aluminate spinel powder (MgAl 2 O 4 , abbreviated as MA) were prepared by the liquid mixing method. The synthesis of MA involved Mg powders with various weight compositions (4.8; 10; 20; 30; 40; and 60%) and Al powders (95.2; 90; 80; 70; 60 and 40%) as the raw materials, which were independently dissolved in 37% HCl to form MgCl 2 and AlCl 3 solutions. Both solutions were then mixed and stirred for 5 hours and dried to a temperature of about 100-105°C to produce powders with different weight compositions. Each powder resulted from drying was characterized using DTA-TGA, and then calcined at 650 °C; 750 °C and 850 °C for 1 hour. The calcined powder was characterized by XRD to qualitative and quantitative analyses using Rietica. It was found that MA samples contained only MgAl 2 O 4 and MgO as the impurity phase. The relative weight fraction of MgAl 2 O 4 increased up to 99% for 95.2 wt% Al. Using an extrapolative approach to determine the Mg-to-Al composition, nearly pure MA, as high as 99%, was achieved at 95.2% Al and 4.8% Mg.","PeriodicalId":17685,"journal":{"name":"Jurnal Neutrino","volume":"31 1","pages":"21-29"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE EFFECT OF Mg-Al Wt% FOR PHASE FORMATION OF SPINEL MgAl2O4 PRODUCED BY METAL DISSOLVED METHOD\",\"authors\":\"Chairatul Umamah, S. Pratapa, H. Andi\",\"doi\":\"10.18860/neu.v12i1.7816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesis of magnesium aluminate spinel powder (MgAl 2 O 4 , abbreviated as MA) were prepared by the liquid mixing method. The synthesis of MA involved Mg powders with various weight compositions (4.8; 10; 20; 30; 40; and 60%) and Al powders (95.2; 90; 80; 70; 60 and 40%) as the raw materials, which were independently dissolved in 37% HCl to form MgCl 2 and AlCl 3 solutions. Both solutions were then mixed and stirred for 5 hours and dried to a temperature of about 100-105°C to produce powders with different weight compositions. Each powder resulted from drying was characterized using DTA-TGA, and then calcined at 650 °C; 750 °C and 850 °C for 1 hour. The calcined powder was characterized by XRD to qualitative and quantitative analyses using Rietica. It was found that MA samples contained only MgAl 2 O 4 and MgO as the impurity phase. The relative weight fraction of MgAl 2 O 4 increased up to 99% for 95.2 wt% Al. Using an extrapolative approach to determine the Mg-to-Al composition, nearly pure MA, as high as 99%, was achieved at 95.2% Al and 4.8% Mg.\",\"PeriodicalId\":17685,\"journal\":{\"name\":\"Jurnal Neutrino\",\"volume\":\"31 1\",\"pages\":\"21-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Neutrino\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18860/neu.v12i1.7816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Neutrino","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/neu.v12i1.7816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE EFFECT OF Mg-Al Wt% FOR PHASE FORMATION OF SPINEL MgAl2O4 PRODUCED BY METAL DISSOLVED METHOD
Synthesis of magnesium aluminate spinel powder (MgAl 2 O 4 , abbreviated as MA) were prepared by the liquid mixing method. The synthesis of MA involved Mg powders with various weight compositions (4.8; 10; 20; 30; 40; and 60%) and Al powders (95.2; 90; 80; 70; 60 and 40%) as the raw materials, which were independently dissolved in 37% HCl to form MgCl 2 and AlCl 3 solutions. Both solutions were then mixed and stirred for 5 hours and dried to a temperature of about 100-105°C to produce powders with different weight compositions. Each powder resulted from drying was characterized using DTA-TGA, and then calcined at 650 °C; 750 °C and 850 °C for 1 hour. The calcined powder was characterized by XRD to qualitative and quantitative analyses using Rietica. It was found that MA samples contained only MgAl 2 O 4 and MgO as the impurity phase. The relative weight fraction of MgAl 2 O 4 increased up to 99% for 95.2 wt% Al. Using an extrapolative approach to determine the Mg-to-Al composition, nearly pure MA, as high as 99%, was achieved at 95.2% Al and 4.8% Mg.