{"title":"基于安全凸通道的非完整漫游车在混乱环境下的轨迹优化","authors":"Yiqun Li, Shaoqiang Liang, Jiahui Gao, Zong Chen, Siyuan Qiao, Zhoupin Yin","doi":"10.3390/aerospace10080705","DOIUrl":null,"url":null,"abstract":"Due to the limitation of space rover onboard computing resources and energy, there is an urgent need for high-quality drive trajectories in complex environments, which can be provided by delicately designed motion optimization methods. The nonconvexity of the collision avoidance constraints poses a significant challenge to the optimization-based motion planning of nonholonomic vehicles, especially in unstructured cluttered environments. In this paper, a novel obstacle decomposition approach, which swiftly decomposes nonconvex obstacles into their constituent convex substructures while concurrently minimizing the proliferation of resultant subobstacles, is proposed. A safe convex corridor construction method is introduced to formulate the collision avoidance constraints. The numerical approximation methods are applied to transfer the resulting continuous motion optimization problem to a nonlinear programming problem (NLP). Simulation experiments are conducted to illustrate the feasibility and superiority of the proposed methods over the rectangle safe corridor method and the area method.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"123 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trajectory Optimization for the Nonholonomic Space Rover in Cluttered Environments Using Safe Convex Corridors\",\"authors\":\"Yiqun Li, Shaoqiang Liang, Jiahui Gao, Zong Chen, Siyuan Qiao, Zhoupin Yin\",\"doi\":\"10.3390/aerospace10080705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the limitation of space rover onboard computing resources and energy, there is an urgent need for high-quality drive trajectories in complex environments, which can be provided by delicately designed motion optimization methods. The nonconvexity of the collision avoidance constraints poses a significant challenge to the optimization-based motion planning of nonholonomic vehicles, especially in unstructured cluttered environments. In this paper, a novel obstacle decomposition approach, which swiftly decomposes nonconvex obstacles into their constituent convex substructures while concurrently minimizing the proliferation of resultant subobstacles, is proposed. A safe convex corridor construction method is introduced to formulate the collision avoidance constraints. The numerical approximation methods are applied to transfer the resulting continuous motion optimization problem to a nonlinear programming problem (NLP). Simulation experiments are conducted to illustrate the feasibility and superiority of the proposed methods over the rectangle safe corridor method and the area method.\",\"PeriodicalId\":50845,\"journal\":{\"name\":\"Aerospace America\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace America\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10080705\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10080705","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Trajectory Optimization for the Nonholonomic Space Rover in Cluttered Environments Using Safe Convex Corridors
Due to the limitation of space rover onboard computing resources and energy, there is an urgent need for high-quality drive trajectories in complex environments, which can be provided by delicately designed motion optimization methods. The nonconvexity of the collision avoidance constraints poses a significant challenge to the optimization-based motion planning of nonholonomic vehicles, especially in unstructured cluttered environments. In this paper, a novel obstacle decomposition approach, which swiftly decomposes nonconvex obstacles into their constituent convex substructures while concurrently minimizing the proliferation of resultant subobstacles, is proposed. A safe convex corridor construction method is introduced to formulate the collision avoidance constraints. The numerical approximation methods are applied to transfer the resulting continuous motion optimization problem to a nonlinear programming problem (NLP). Simulation experiments are conducted to illustrate the feasibility and superiority of the proposed methods over the rectangle safe corridor method and the area method.