基于多值神经元的复值支持向量机

Hokuto Shinoda, M. Hattori
{"title":"基于多值神经元的复值支持向量机","authors":"Hokuto Shinoda, M. Hattori","doi":"10.1109/ICOIACT.2018.8350666","DOIUrl":null,"url":null,"abstract":"In this paper, we propose complex-valued support vector machines (CVSVMs) which are a new type of support vector machines (SVMs) based on multi-valued neurons (MVNs). An MVN which is a type of complex-valued neurons is a component of the proposed CVSVM. The features of the proposed CVSVM are: 1) it has a multi-valued complex output; 2) it provides the generalization ability by a decision boundary with the maximal margin; 3) it can deal with non-linear classification by using a kernel function. Experimental results for some famous benchmark problems show the effectiveness of the proposed CVSVM.","PeriodicalId":6660,"journal":{"name":"2018 International Conference on Information and Communications Technology (ICOIACT)","volume":"17 1","pages":"208-213"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex-valued support vector machines based on multi-valued neurons\",\"authors\":\"Hokuto Shinoda, M. Hattori\",\"doi\":\"10.1109/ICOIACT.2018.8350666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose complex-valued support vector machines (CVSVMs) which are a new type of support vector machines (SVMs) based on multi-valued neurons (MVNs). An MVN which is a type of complex-valued neurons is a component of the proposed CVSVM. The features of the proposed CVSVM are: 1) it has a multi-valued complex output; 2) it provides the generalization ability by a decision boundary with the maximal margin; 3) it can deal with non-linear classification by using a kernel function. Experimental results for some famous benchmark problems show the effectiveness of the proposed CVSVM.\",\"PeriodicalId\":6660,\"journal\":{\"name\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"volume\":\"17 1\",\"pages\":\"208-213\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIACT.2018.8350666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communications Technology (ICOIACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIACT.2018.8350666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了复值支持向量机(CVSVMs),它是一种基于多值神经元的新型支持向量机。MVN是一种复值神经元,是所提出的CVSVM的一个组成部分。所提出的CVSVM具有以下特点:1)具有多值复输出;2)通过边界最大的决策边界提供泛化能力;3)利用核函数处理非线性分类。对一些著名基准问题的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex-valued support vector machines based on multi-valued neurons
In this paper, we propose complex-valued support vector machines (CVSVMs) which are a new type of support vector machines (SVMs) based on multi-valued neurons (MVNs). An MVN which is a type of complex-valued neurons is a component of the proposed CVSVM. The features of the proposed CVSVM are: 1) it has a multi-valued complex output; 2) it provides the generalization ability by a decision boundary with the maximal margin; 3) it can deal with non-linear classification by using a kernel function. Experimental results for some famous benchmark problems show the effectiveness of the proposed CVSVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信