图上标签传播的上下文引导扩散

K. Kim, J. Tompkin, H. Pfister, C. Theobalt
{"title":"图上标签传播的上下文引导扩散","authors":"K. Kim, J. Tompkin, H. Pfister, C. Theobalt","doi":"10.1109/ICCV.2015.318","DOIUrl":null,"url":null,"abstract":"Existing approaches for diffusion on graphs, e.g., for label propagation, are mainly focused on isotropic diffusion, which is induced by the commonly-used graph Laplacian regularizer. Inspired by the success of diffusivity tensors for anisotropic diffusion in image processing, we presents anisotropic diffusion on graphs and the corresponding label propagation algorithm. We develop positive definite diffusivity operators on the vector bundles of Riemannian manifolds, and discretize them to diffusivity operators on graphs. This enables us to easily define new robust diffusivity operators which significantly improve semi-supervised learning performance over existing diffusion algorithms.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"29 1","pages":"2776-2784"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Context-Guided Diffusion for Label Propagation on Graphs\",\"authors\":\"K. Kim, J. Tompkin, H. Pfister, C. Theobalt\",\"doi\":\"10.1109/ICCV.2015.318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing approaches for diffusion on graphs, e.g., for label propagation, are mainly focused on isotropic diffusion, which is induced by the commonly-used graph Laplacian regularizer. Inspired by the success of diffusivity tensors for anisotropic diffusion in image processing, we presents anisotropic diffusion on graphs and the corresponding label propagation algorithm. We develop positive definite diffusivity operators on the vector bundles of Riemannian manifolds, and discretize them to diffusivity operators on graphs. This enables us to easily define new robust diffusivity operators which significantly improve semi-supervised learning performance over existing diffusion algorithms.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"29 1\",\"pages\":\"2776-2784\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

现有的图上扩散方法,如标签传播,主要集中在各向同性扩散,这是由常用的图拉普拉斯正则化器诱导的。受扩散张量在图像处理中应用于各向异性扩散的成功启发,我们提出了图上的各向异性扩散及其相应的标签传播算法。在黎曼流形的向量束上建立了正定的扩散算子,并将其离散为图上的扩散算子。这使我们能够轻松定义新的鲁棒扩散算子,这些算子显著提高了现有扩散算法的半监督学习性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-Guided Diffusion for Label Propagation on Graphs
Existing approaches for diffusion on graphs, e.g., for label propagation, are mainly focused on isotropic diffusion, which is induced by the commonly-used graph Laplacian regularizer. Inspired by the success of diffusivity tensors for anisotropic diffusion in image processing, we presents anisotropic diffusion on graphs and the corresponding label propagation algorithm. We develop positive definite diffusivity operators on the vector bundles of Riemannian manifolds, and discretize them to diffusivity operators on graphs. This enables us to easily define new robust diffusivity operators which significantly improve semi-supervised learning performance over existing diffusion algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信