关于环面流形的ko -群

L. Cai, Suyoung Choi, Hanchul Park
{"title":"关于环面流形的ko -群","authors":"L. Cai, Suyoung Choi, Hanchul Park","doi":"10.2140/agt.2020.20.2589","DOIUrl":null,"url":null,"abstract":"In this paper we consider the real topological K-groups of a toric manifold M, which turns out to be closely related to the topology of the small cover MR, the fixed points under the canonical conjugation on M . Following the work of Bahri and Bendersky [2], we give an explicit formula for the KO-groups of toric manifolds, and then we characterize the two extreme classes of toric manifolds according to the two A(1) modules shown in [2].","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"16 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the KO–groups of toric manifolds\",\"authors\":\"L. Cai, Suyoung Choi, Hanchul Park\",\"doi\":\"10.2140/agt.2020.20.2589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the real topological K-groups of a toric manifold M, which turns out to be closely related to the topology of the small cover MR, the fixed points under the canonical conjugation on M . Following the work of Bahri and Bendersky [2], we give an explicit formula for the KO-groups of toric manifolds, and then we characterize the two extreme classes of toric manifolds according to the two A(1) modules shown in [2].\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"16 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2020.20.2589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2020.20.2589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一个环流形M的实拓扑k群,它与小覆盖MR的拓扑密切相关,即M上正则共轭下的不动点。根据Bahri和Bendersky[2]的工作,我们给出了环流形的ko -群的显式公式,然后根据[2]中所示的两个A(1)模对环流形的两个极端类进行了刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the KO–groups of toric manifolds
In this paper we consider the real topological K-groups of a toric manifold M, which turns out to be closely related to the topology of the small cover MR, the fixed points under the canonical conjugation on M . Following the work of Bahri and Bendersky [2], we give an explicit formula for the KO-groups of toric manifolds, and then we characterize the two extreme classes of toric manifolds according to the two A(1) modules shown in [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信