作为同调等价的超限不变量的右精确群补全

S. Ivanov, R. Mikhailov
{"title":"作为同调等价的超限不变量的右精确群补全","authors":"S. Ivanov, R. Mikhailov","doi":"10.2140/AGT.2021.21.447","DOIUrl":null,"url":null,"abstract":"We consider a functor from the category of groups to itself $G\\mapsto \\mathbb Z_\\infty G$ that we call right exact $\\mathbb Z$-completion of a group. It is connected with the pronilpotent completion $\\hat G$ by the short exact sequence $1\\to {\\varprojlim}^1\\: M_n G \\to \\mathbb Z_\\infty G \\to \\hat G \\to 1,$ where $M_n G$ is $n$-th Baer invariant of $G.$ We prove that $\\mathbb Z_\\infty \\pi_1(X)$ is an invariant of homological equivalence of a space $X$. Moreover, we prove an analogue of Stallings' theorem: if $G\\to G'$ is a 2-connected group homomorphism, then $\\mathbb Z_\\infty G\\cong \\mathbb Z_\\infty G'.$ We give examples of $3$-manifolds $X,Y$ such that $ \\hat{\\pi_1(X)}\\cong \\hat{\\pi_1( Y)}$ but $\\mathbb Z_\\infty \\pi_1(X)\\not \\cong \\mathbb Z_\\infty \\pi_1(Y).$ We prove that for a finitely generated group $G$ we have $(\\mathbb Z_\\infty G)/ \\gamma_\\omega= \\hat G.$ So the difference between $\\hat G$ and $\\mathbb Z_\\infty G$ lies in $\\gamma_\\omega.$ This allows us to treat $\\mathbb Z_\\infty \\pi_1(X)$ as a transfinite invariant of $X.$ The advantage of our approach is that it can be used not only for $3$-manifolds but for arbitrary spaces.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Right exact group completion as a transfinite invariant of homology equivalence\",\"authors\":\"S. Ivanov, R. Mikhailov\",\"doi\":\"10.2140/AGT.2021.21.447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a functor from the category of groups to itself $G\\\\mapsto \\\\mathbb Z_\\\\infty G$ that we call right exact $\\\\mathbb Z$-completion of a group. It is connected with the pronilpotent completion $\\\\hat G$ by the short exact sequence $1\\\\to {\\\\varprojlim}^1\\\\: M_n G \\\\to \\\\mathbb Z_\\\\infty G \\\\to \\\\hat G \\\\to 1,$ where $M_n G$ is $n$-th Baer invariant of $G.$ We prove that $\\\\mathbb Z_\\\\infty \\\\pi_1(X)$ is an invariant of homological equivalence of a space $X$. Moreover, we prove an analogue of Stallings' theorem: if $G\\\\to G'$ is a 2-connected group homomorphism, then $\\\\mathbb Z_\\\\infty G\\\\cong \\\\mathbb Z_\\\\infty G'.$ We give examples of $3$-manifolds $X,Y$ such that $ \\\\hat{\\\\pi_1(X)}\\\\cong \\\\hat{\\\\pi_1( Y)}$ but $\\\\mathbb Z_\\\\infty \\\\pi_1(X)\\\\not \\\\cong \\\\mathbb Z_\\\\infty \\\\pi_1(Y).$ We prove that for a finitely generated group $G$ we have $(\\\\mathbb Z_\\\\infty G)/ \\\\gamma_\\\\omega= \\\\hat G.$ So the difference between $\\\\hat G$ and $\\\\mathbb Z_\\\\infty G$ lies in $\\\\gamma_\\\\omega.$ This allows us to treat $\\\\mathbb Z_\\\\infty \\\\pi_1(X)$ as a transfinite invariant of $X.$ The advantage of our approach is that it can be used not only for $3$-manifolds but for arbitrary spaces.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/AGT.2021.21.447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AGT.2021.21.447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑一个从群范畴到自身的函子 $G\mapsto \mathbb Z_\infty G$ 我们称之为完全正确 $\mathbb Z$-完成一个组。它与阳痿完成有关 $\hat G$ 通过精确的短序列 $1\to {\varprojlim}^1\: M_n G \to \mathbb Z_\infty G \to \hat G \to 1,$ 在哪里 $M_n G$ 是 $n$的贝尔不变量 $G.$ 我们证明 $\mathbb Z_\infty \pi_1(X)$ 是一个空间的同调等价的不变量吗 $X$. 此外,我们证明了一个类似的斯托林斯定理:如果 $G\to G'$ 那么2连通群是同态的吗 $\mathbb Z_\infty G\cong \mathbb Z_\infty G'.$ 我们举一些例子 $3$-流形 $X,Y$ 这样 $ \hat{\pi_1(X)}\cong \hat{\pi_1( Y)}$ 但是 $\mathbb Z_\infty \pi_1(X)\not \cong \mathbb Z_\infty \pi_1(Y).$ 我们证明了对于有限生成群 $G$ 我们有 $(\mathbb Z_\infty G)/ \gamma_\omega= \hat G.$ 所以两者的区别 $\hat G$ 和 $\mathbb Z_\infty G$ 在于 $\gamma_\omega.$ 这使我们能够治疗 $\mathbb Z_\infty \pi_1(X)$ 作为的超限不变量 $X.$ 我们的方法的优点是,它不仅可以用于 $3$-流形,但适用于任意空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Right exact group completion as a transfinite invariant of homology equivalence
We consider a functor from the category of groups to itself $G\mapsto \mathbb Z_\infty G$ that we call right exact $\mathbb Z$-completion of a group. It is connected with the pronilpotent completion $\hat G$ by the short exact sequence $1\to {\varprojlim}^1\: M_n G \to \mathbb Z_\infty G \to \hat G \to 1,$ where $M_n G$ is $n$-th Baer invariant of $G.$ We prove that $\mathbb Z_\infty \pi_1(X)$ is an invariant of homological equivalence of a space $X$. Moreover, we prove an analogue of Stallings' theorem: if $G\to G'$ is a 2-connected group homomorphism, then $\mathbb Z_\infty G\cong \mathbb Z_\infty G'.$ We give examples of $3$-manifolds $X,Y$ such that $ \hat{\pi_1(X)}\cong \hat{\pi_1( Y)}$ but $\mathbb Z_\infty \pi_1(X)\not \cong \mathbb Z_\infty \pi_1(Y).$ We prove that for a finitely generated group $G$ we have $(\mathbb Z_\infty G)/ \gamma_\omega= \hat G.$ So the difference between $\hat G$ and $\mathbb Z_\infty G$ lies in $\gamma_\omega.$ This allows us to treat $\mathbb Z_\infty \pi_1(X)$ as a transfinite invariant of $X.$ The advantage of our approach is that it can be used not only for $3$-manifolds but for arbitrary spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信