{"title":"接近实时的动物动作识别和分类","authors":"A. D. Egorov, M. S. Reznik","doi":"10.18287/2412-6179-co-1138","DOIUrl":null,"url":null,"abstract":"In computer vision, identification of actions of an object is considered as a complex and relevant task. When solving the problem, one requires information on the position of key points of the object. Training models that determine the position of key points requires a large amount of data, including information on the position of these key points. Due to the lack of data for training, the paper provides a method for obtaining additional data for training, as well as an algorithm that allows highly accurate recognition of animal actions based on a small number of data. The achieved accuracy of determining the key points positions within a test sample is 92%. Positions of the key points define the action of the object. Various approaches to classifying actions by key points are compared. The accuracy of identifying the action of the object in the image reaches 72.9 %.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near real-time animal action recognition and classification\",\"authors\":\"A. D. Egorov, M. S. Reznik\",\"doi\":\"10.18287/2412-6179-co-1138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computer vision, identification of actions of an object is considered as a complex and relevant task. When solving the problem, one requires information on the position of key points of the object. Training models that determine the position of key points requires a large amount of data, including information on the position of these key points. Due to the lack of data for training, the paper provides a method for obtaining additional data for training, as well as an algorithm that allows highly accurate recognition of animal actions based on a small number of data. The achieved accuracy of determining the key points positions within a test sample is 92%. Positions of the key points define the action of the object. Various approaches to classifying actions by key points are compared. The accuracy of identifying the action of the object in the image reaches 72.9 %.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1138\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Near real-time animal action recognition and classification
In computer vision, identification of actions of an object is considered as a complex and relevant task. When solving the problem, one requires information on the position of key points of the object. Training models that determine the position of key points requires a large amount of data, including information on the position of these key points. Due to the lack of data for training, the paper provides a method for obtaining additional data for training, as well as an algorithm that allows highly accurate recognition of animal actions based on a small number of data. The achieved accuracy of determining the key points positions within a test sample is 92%. Positions of the key points define the action of the object. Various approaches to classifying actions by key points are compared. The accuracy of identifying the action of the object in the image reaches 72.9 %.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.