{"title":"接近实时的动物动作识别和分类","authors":"A. D. Egorov, M. S. Reznik","doi":"10.18287/2412-6179-co-1138","DOIUrl":null,"url":null,"abstract":"In computer vision, identification of actions of an object is considered as a complex and relevant task. When solving the problem, one requires information on the position of key points of the object. Training models that determine the position of key points requires a large amount of data, including information on the position of these key points. Due to the lack of data for training, the paper provides a method for obtaining additional data for training, as well as an algorithm that allows highly accurate recognition of animal actions based on a small number of data. The achieved accuracy of determining the key points positions within a test sample is 92%. Positions of the key points define the action of the object. Various approaches to classifying actions by key points are compared. The accuracy of identifying the action of the object in the image reaches 72.9 %.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"107 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near real-time animal action recognition and classification\",\"authors\":\"A. D. Egorov, M. S. Reznik\",\"doi\":\"10.18287/2412-6179-co-1138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computer vision, identification of actions of an object is considered as a complex and relevant task. When solving the problem, one requires information on the position of key points of the object. Training models that determine the position of key points requires a large amount of data, including information on the position of these key points. Due to the lack of data for training, the paper provides a method for obtaining additional data for training, as well as an algorithm that allows highly accurate recognition of animal actions based on a small number of data. The achieved accuracy of determining the key points positions within a test sample is 92%. Positions of the key points define the action of the object. Various approaches to classifying actions by key points are compared. The accuracy of identifying the action of the object in the image reaches 72.9 %.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Near real-time animal action recognition and classification
In computer vision, identification of actions of an object is considered as a complex and relevant task. When solving the problem, one requires information on the position of key points of the object. Training models that determine the position of key points requires a large amount of data, including information on the position of these key points. Due to the lack of data for training, the paper provides a method for obtaining additional data for training, as well as an algorithm that allows highly accurate recognition of animal actions based on a small number of data. The achieved accuracy of determining the key points positions within a test sample is 92%. Positions of the key points define the action of the object. Various approaches to classifying actions by key points are compared. The accuracy of identifying the action of the object in the image reaches 72.9 %.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.