通过生成模型的贝叶斯优化引导搜索所需的功能响应:铁电体中的磁滞环形状工程

Sergei V. Kalinin, M. Ziatdinov, R. Vasudevan
{"title":"通过生成模型的贝叶斯优化引导搜索所需的功能响应:铁电体中的磁滞环形状工程","authors":"Sergei V. Kalinin, M. Ziatdinov, R. Vasudevan","doi":"10.1063/5.0011917","DOIUrl":null,"url":null,"abstract":"Advances in predictive modeling across multiple disciplines have yielded generative models capable of high veracity in predicting macroscopic functional responses of materials. Correspondingly, of interest is the inverse problem of finding the model parameter that will yield desired macroscopic responses, such as stress-strain curves, ferroelectric hysteresis loops, etc. Here we suggest and implement a Gaussian Process based methods that allow to effectively sample the degenerate parameter space of a complex non-local model to output regions of parameter space which yield desired functionalities. We discuss the specific adaptation of the acquisition function and sampling function to make the process efficient and balance the efficient exploration of parameter space for multiple possible minima and exploitation to densely sample the regions of interest where target behaviors are optimized. This approach is illustrated via the hysteresis loop engineering in ferroelectric materials, but can be adapted to other functionalities and generative models. The code is open-sourced and available at [this http URL].","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Guided search for desired functional responses via Bayesian optimization of generative model: Hysteresis loop shape engineering in ferroelectrics\",\"authors\":\"Sergei V. Kalinin, M. Ziatdinov, R. Vasudevan\",\"doi\":\"10.1063/5.0011917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in predictive modeling across multiple disciplines have yielded generative models capable of high veracity in predicting macroscopic functional responses of materials. Correspondingly, of interest is the inverse problem of finding the model parameter that will yield desired macroscopic responses, such as stress-strain curves, ferroelectric hysteresis loops, etc. Here we suggest and implement a Gaussian Process based methods that allow to effectively sample the degenerate parameter space of a complex non-local model to output regions of parameter space which yield desired functionalities. We discuss the specific adaptation of the acquisition function and sampling function to make the process efficient and balance the efficient exploration of parameter space for multiple possible minima and exploitation to densely sample the regions of interest where target behaviors are optimized. This approach is illustrated via the hysteresis loop engineering in ferroelectric materials, but can be adapted to other functionalities and generative models. The code is open-sourced and available at [this http URL].\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0011917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0011917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

多学科预测建模的进展已经产生了能够预测材料宏观功能响应的高准确性的生成模型。相应地,我们感兴趣的是寻找模型参数的逆问题,该模型参数将产生所需的宏观响应,如应力-应变曲线、铁电迟滞回线等。在这里,我们提出并实现了一种基于高斯过程的方法,该方法允许有效地将复杂非局部模型的退化参数空间采样到参数空间的输出区域,从而产生所需的功能。我们讨论了采集函数和采样函数的具体适应,以使过程高效,并平衡对多个可能极小值的参数空间的有效探索和对目标行为优化的感兴趣区域的密集采样。这种方法是通过铁电材料的磁滞回线工程来说明的,但可以适用于其他功能和生成模型。该代码是开源的,可在[此http URL]获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guided search for desired functional responses via Bayesian optimization of generative model: Hysteresis loop shape engineering in ferroelectrics
Advances in predictive modeling across multiple disciplines have yielded generative models capable of high veracity in predicting macroscopic functional responses of materials. Correspondingly, of interest is the inverse problem of finding the model parameter that will yield desired macroscopic responses, such as stress-strain curves, ferroelectric hysteresis loops, etc. Here we suggest and implement a Gaussian Process based methods that allow to effectively sample the degenerate parameter space of a complex non-local model to output regions of parameter space which yield desired functionalities. We discuss the specific adaptation of the acquisition function and sampling function to make the process efficient and balance the efficient exploration of parameter space for multiple possible minima and exploitation to densely sample the regions of interest where target behaviors are optimized. This approach is illustrated via the hysteresis loop engineering in ferroelectric materials, but can be adapted to other functionalities and generative models. The code is open-sourced and available at [this http URL].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信