p进积分几何

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Avinash Kulkarni, A. Lerário
{"title":"p进积分几何","authors":"Avinash Kulkarni, A. Lerário","doi":"10.1137/19m1284737","DOIUrl":null,"url":null,"abstract":"We prove a $p$-adic version of the Integral Geometry Formula for averaging the intersection of two $p$-adic projective algebraic sets. We apply this result to give bounds on the number of points in the modulo $p^m$ reduction of a projective set (reproving a result by Oesterl\\'e) and to the study of random $p$-adic polynomial systems of equations.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"p-Adic Integral Geometry\",\"authors\":\"Avinash Kulkarni, A. Lerário\",\"doi\":\"10.1137/19m1284737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a $p$-adic version of the Integral Geometry Formula for averaging the intersection of two $p$-adic projective algebraic sets. We apply this result to give bounds on the number of points in the modulo $p^m$ reduction of a projective set (reproving a result by Oesterl\\\\'e) and to the study of random $p$-adic polynomial systems of equations.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/19m1284737\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/19m1284737","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 16

摘要

证明了两个$p$进射影代数集的交点求平均值的$p$进积分几何公式的一个$p$进版本。我们应用这一结果给出了投影集的模p^m约简中的点个数的界(对Oesterl\'e的一个结果进行了改进),并应用于随机p$-进多项式方程组的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
p-Adic Integral Geometry
We prove a $p$-adic version of the Integral Geometry Formula for averaging the intersection of two $p$-adic projective algebraic sets. We apply this result to give bounds on the number of points in the modulo $p^m$ reduction of a projective set (reproving a result by Oesterl\'e) and to the study of random $p$-adic polynomial systems of equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信