心肌细胞收缩力随化学环境的变化而变化

Jin You, Hyowon Moon, B. Lee, Ju-young Jin, Z. Chang, J. F. Suh, Jinseok Kim, Jungyul Park, Y. Hwang
{"title":"心肌细胞收缩力随化学环境的变化而变化","authors":"Jin You, Hyowon Moon, B. Lee, Ju-young Jin, Z. Chang, J. F. Suh, Jinseok Kim, Jungyul Park, Y. Hwang","doi":"10.1109/NEMS.2014.6908796","DOIUrl":null,"url":null,"abstract":"In this study, we demonstrate that drug treatments change cardiomyocyte contractile force in vitro. Contractile force was determined by bending deflection of the cantilever end. We quantified the effect of Digoxin, Isoproterenol, and BayK8644, drugs that increase contractile force, on cardiomyocyte contractile forces when grown on the grooved cantilever. We also investigated the effect of Verapamil, which decreases contractile force. We applied Digoxin, Isoproterenol, and BayK8644 on day 8, and Verapamil on day 5. Digoxin, Isoproterenol, and BayK8644 increased cardiomyocyte contractile forces by 19.31%, 9.75%, and 23.81%, respectively. Verapamil decreased the contractile force by 48.06%. In summary, we monitored bending movement with cantilever sensors and concluded that cardiomyocyte contractile force changes in response to various drug treatments.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"18 1","pages":"225-228"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiomyocyte contractile force changes in response to chemical environments\",\"authors\":\"Jin You, Hyowon Moon, B. Lee, Ju-young Jin, Z. Chang, J. F. Suh, Jinseok Kim, Jungyul Park, Y. Hwang\",\"doi\":\"10.1109/NEMS.2014.6908796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we demonstrate that drug treatments change cardiomyocyte contractile force in vitro. Contractile force was determined by bending deflection of the cantilever end. We quantified the effect of Digoxin, Isoproterenol, and BayK8644, drugs that increase contractile force, on cardiomyocyte contractile forces when grown on the grooved cantilever. We also investigated the effect of Verapamil, which decreases contractile force. We applied Digoxin, Isoproterenol, and BayK8644 on day 8, and Verapamil on day 5. Digoxin, Isoproterenol, and BayK8644 increased cardiomyocyte contractile forces by 19.31%, 9.75%, and 23.81%, respectively. Verapamil decreased the contractile force by 48.06%. In summary, we monitored bending movement with cantilever sensors and concluded that cardiomyocyte contractile force changes in response to various drug treatments.\",\"PeriodicalId\":22566,\"journal\":{\"name\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"18 1\",\"pages\":\"225-228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2014.6908796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们证明了药物治疗在体外改变心肌细胞的收缩力。收缩力由悬臂端弯曲挠度决定。我们量化了地高辛、异丙肾上腺素和BayK8644这些增加收缩力的药物在凹槽悬臂上生长时对心肌细胞收缩力的影响。我们还研究了维拉帕米降低收缩力的作用。第8天应用地高辛、异丙肾上腺素和BayK8644,第5天应用维拉帕米。地高辛、异丙肾上腺素和BayK8644分别使心肌细胞收缩力增加19.31%、9.75%和23.81%。维拉帕米使收缩力降低48.06%。总之,我们用悬臂式传感器监测弯曲运动,并得出结论,心肌细胞收缩力随各种药物治疗而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiomyocyte contractile force changes in response to chemical environments
In this study, we demonstrate that drug treatments change cardiomyocyte contractile force in vitro. Contractile force was determined by bending deflection of the cantilever end. We quantified the effect of Digoxin, Isoproterenol, and BayK8644, drugs that increase contractile force, on cardiomyocyte contractile forces when grown on the grooved cantilever. We also investigated the effect of Verapamil, which decreases contractile force. We applied Digoxin, Isoproterenol, and BayK8644 on day 8, and Verapamil on day 5. Digoxin, Isoproterenol, and BayK8644 increased cardiomyocyte contractile forces by 19.31%, 9.75%, and 23.81%, respectively. Verapamil decreased the contractile force by 48.06%. In summary, we monitored bending movement with cantilever sensors and concluded that cardiomyocyte contractile force changes in response to various drug treatments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信