铁磁材料中的磁场扩散:分数阶演算方法

IF 2.2 Q1 MATHEMATICS, APPLIED
J. Hristov
{"title":"铁磁材料中的磁场扩散:分数阶演算方法","authors":"J. Hristov","doi":"10.11121/ijocta.01.2021.001100","DOIUrl":null,"url":null,"abstract":"The paper addresses diffusion approximations of magnetic field penetration of ferromagnetic materials with emphasis on fractional calculus applications and relevant approximate solutions. Examples with applications of time-fractional semi-derivatives and singular kernel models (Caputo time fractional operator) in cases of field independent and field-dependent magnetic diffusivities have been developed: Dirichlet problems and time-dependent boundary condition (power-law ramp). Approximate solutions in all theses case have been developed by applications of the integral-balance method and assumed parabolic profile with unspecified exponents. Tow version of the integral method have been successfully implemented: SDIM (single integration applicable to time-fractional semi-derivative model) and DIM (double-integration model to fractionalized singular memory models). The fading memory approach in the sense of the causality concept and memory kernel effect on the model constructions have been discussed.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Magnetic field diffusion in ferromagnetic materials: fractional calculus approaches\",\"authors\":\"J. Hristov\",\"doi\":\"10.11121/ijocta.01.2021.001100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses diffusion approximations of magnetic field penetration of ferromagnetic materials with emphasis on fractional calculus applications and relevant approximate solutions. Examples with applications of time-fractional semi-derivatives and singular kernel models (Caputo time fractional operator) in cases of field independent and field-dependent magnetic diffusivities have been developed: Dirichlet problems and time-dependent boundary condition (power-law ramp). Approximate solutions in all theses case have been developed by applications of the integral-balance method and assumed parabolic profile with unspecified exponents. Tow version of the integral method have been successfully implemented: SDIM (single integration applicable to time-fractional semi-derivative model) and DIM (double-integration model to fractionalized singular memory models). The fading memory approach in the sense of the causality concept and memory kernel effect on the model constructions have been discussed.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.01.2021.001100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.01.2021.001100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论了磁场穿透铁磁材料的扩散近似,重点介绍了分数阶微积分的应用和相关的近似解。在场无关和场相关磁扩散率的情况下,开发了时间分数半导数和奇异核模型(Caputo时间分数算子)的应用实例:Dirichlet问题和时间相关边界条件(幂律斜坡)。应用积分平衡法和未指定指数的抛物线形,得到了上述情况的近似解。两种版本的积分方法已经成功实现:SDIM(单积分适用于时间分数半导数模型)和DIM(双积分模型适用于分数化奇异记忆模型)。讨论了因果概念意义上的衰退记忆方法和记忆核效应对模型构建的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic field diffusion in ferromagnetic materials: fractional calculus approaches
The paper addresses diffusion approximations of magnetic field penetration of ferromagnetic materials with emphasis on fractional calculus applications and relevant approximate solutions. Examples with applications of time-fractional semi-derivatives and singular kernel models (Caputo time fractional operator) in cases of field independent and field-dependent magnetic diffusivities have been developed: Dirichlet problems and time-dependent boundary condition (power-law ramp). Approximate solutions in all theses case have been developed by applications of the integral-balance method and assumed parabolic profile with unspecified exponents. Tow version of the integral method have been successfully implemented: SDIM (single integration applicable to time-fractional semi-derivative model) and DIM (double-integration model to fractionalized singular memory models). The fading memory approach in the sense of the causality concept and memory kernel effect on the model constructions have been discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信