{"title":"铁磁材料中的磁场扩散:分数阶演算方法","authors":"J. Hristov","doi":"10.11121/ijocta.01.2021.001100","DOIUrl":null,"url":null,"abstract":"The paper addresses diffusion approximations of magnetic field penetration of ferromagnetic materials with emphasis on fractional calculus applications and relevant approximate solutions. Examples with applications of time-fractional semi-derivatives and singular kernel models (Caputo time fractional operator) in cases of field independent and field-dependent magnetic diffusivities have been developed: Dirichlet problems and time-dependent boundary condition (power-law ramp). Approximate solutions in all theses case have been developed by applications of the integral-balance method and assumed parabolic profile with unspecified exponents. Tow version of the integral method have been successfully implemented: SDIM (single integration applicable to time-fractional semi-derivative model) and DIM (double-integration model to fractionalized singular memory models). The fading memory approach in the sense of the causality concept and memory kernel effect on the model constructions have been discussed.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Magnetic field diffusion in ferromagnetic materials: fractional calculus approaches\",\"authors\":\"J. Hristov\",\"doi\":\"10.11121/ijocta.01.2021.001100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses diffusion approximations of magnetic field penetration of ferromagnetic materials with emphasis on fractional calculus applications and relevant approximate solutions. Examples with applications of time-fractional semi-derivatives and singular kernel models (Caputo time fractional operator) in cases of field independent and field-dependent magnetic diffusivities have been developed: Dirichlet problems and time-dependent boundary condition (power-law ramp). Approximate solutions in all theses case have been developed by applications of the integral-balance method and assumed parabolic profile with unspecified exponents. Tow version of the integral method have been successfully implemented: SDIM (single integration applicable to time-fractional semi-derivative model) and DIM (double-integration model to fractionalized singular memory models). The fading memory approach in the sense of the causality concept and memory kernel effect on the model constructions have been discussed.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.01.2021.001100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.01.2021.001100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Magnetic field diffusion in ferromagnetic materials: fractional calculus approaches
The paper addresses diffusion approximations of magnetic field penetration of ferromagnetic materials with emphasis on fractional calculus applications and relevant approximate solutions. Examples with applications of time-fractional semi-derivatives and singular kernel models (Caputo time fractional operator) in cases of field independent and field-dependent magnetic diffusivities have been developed: Dirichlet problems and time-dependent boundary condition (power-law ramp). Approximate solutions in all theses case have been developed by applications of the integral-balance method and assumed parabolic profile with unspecified exponents. Tow version of the integral method have been successfully implemented: SDIM (single integration applicable to time-fractional semi-derivative model) and DIM (double-integration model to fractionalized singular memory models). The fading memory approach in the sense of the causality concept and memory kernel effect on the model constructions have been discussed.